<보문>

韓國産 제비v꽃屬의 研究(1)
——Vaginatae 節의 檢討——

李 愚 喆・陸 昌 淑
(東國大學校農生科・慶熙大學校藥學科)

A Study of the Genus Viola in Korea(1)
——of Sect. Vaginatae——

Lee, Wool Tchul & Chang Soo Yook
(Dept. of Biology, Dong Guk Univ. & Dept. of Pharmacy, Kyung Hee Univ.)

(Received Nov. 30 1972)

韓國産 제비v꽃屬 植物의 再検討를 為하여 本研究를 試圖하였으며, 第1報로서 고관제비v꽃 節(Sect. Vaginatae)의 3종의 類縁關係를 報告하고자 한다. 고관제비v꽃節은 北半球에 約10種이라고하며그 중 우리 나라에는 고관제비v꽃(Viola rossii), 高長제비v꽃(V. diamantica) 및 뉴관제비v꽃(V. repens)의 3種이 알려져있다. 이중 뉴관제비v꽃은 中井博士에 依하여 1909年 咸南 甲山에 나는 것으로 報告되었으나(3) 生品의 資料を 收한 수 없어 標本과 記載에 依하였으며 其外의 2種에 関한 것은 主로 形態學의 및 生態學의 比較を 进行하고 特히 化學的分類方式을 導入하여 相関關係를 再検討하였다.

韓國産 제비v꽃屬 植物은 1886年 松村博士가 3種을 記載한 것이 最初이다(4). 그 후 바리빈(Palibin)은 15種의 所産植物을 記載하였고(2) 中井博士는 1909年에 20種을 發表하였으며(5) 이를 1914年 朝鮮植物志卷에 그림과 같이 자세히 설명하였다(6). 그리고 圖氏는 1916年에 韓國産 제비v꽃(Violae Coreanae)이라는 頭名으로 30種의 所産植物을 3節로 分類하였다(9). 1920年 森田三博士는 當時까지 發表된 것을 整理하여 40餘種類를 記載하였고(6) 前記 中井博士는 1922年(10), 1925年(11) 및 1928年(12)에 그의 新知見을 發表하였으며 “제비v꽃記録”(13)라는 頭名으로 東亞産 제비v꽃屬植物을 詳細히 解説하였 다. 1929年 石戸谷勉博士는 베커(Becker)의 分類體系에 依하여 우리나라産 제비v꽃屬을 9節로 整理解説하였다.

우리나라産 本屬植物의 成分에 関해서는 韓星淳 등이 노량제비v꽃의 뿌리에 對한 研究가 있을 뿐이 다(2).

1. 材料及 實験方法

1) 材料

本研究に 使用한 材料는 1972年 7月27日부터 8月 3日까지 江原道 雪岳山과 五台山에서 採集한 高長制v꽃과 高長制v꽃의 生品材料와 筆者들이 带하고 있는 1954年~1972年 사이에 採集한 標本과 種子 그리고 成均館大學校 生物學科에 所蔵된 標本을 使用하였다.

2) 實験方法
(1) 形態觀察方法
材料의 뿌리와 주목부를 습관切片법에 의해 획득하였으며 上하兩面의 表皮 組織을
剝離法으로 觀察하였다. 此外에 使用한 試薬 및 染色試薬은 glycerine water, chloral hydrate solution,
methyl green solution, aniline blue solution, acid fuchsin solution, safranin solution 등을
使用하였다.

(2) 成分實験方法
各試料의 일, 뿌리, 種子等을 生薬實験法에 準じて 検べた. 반고로 만든다음 一般に MeOH로 추출
하였고 種子는 MeOH: H2O (1:1)로 추출하여 TLC, PPC 등을 시행하여 정적적(5% FeCl3 solution,
5% sodium carbonate solution, 1% alcoholic aluminum chloride solution, Meyer 시약, dragendorff 시
약, ninhydrin 시약) 및 U.V-ray, 요오드 흡수等에 依하여 成分을 確認하였다. 種子中的 암모니아
検은 이온교환수지 ambelite IR 120을 사용으로 중분히 채취하여 검찰(Colum)에 주입하여 일
般적인 方法에 依하여 2N-HCl로 活性화한 후에 流出液이 酸性을 나타내지 않을 때까지 채취하여
検査分を 5% 암모니아水로 混流시키고 이용액을 動試하여 材料로 使用하였다.

2. 實験 및 觀察
1) 生態的 觀察
비꽃의 生育地を 觀察した 結果 이들은 海拔 약 700m 를 중심으로 하여 이로 分布하고 있음을 보
있다. 즉 雪岳山에서 동의 兩邊山莊과 西側 五倉庵 近處를 境界로 하여 동쪽은 금강제비꽃, 西
側으로는 고갈제비꽃이 자라고 있다. 五台山 의 경우에도 상임사 一帶를 중심으로 같은 分布를 보이
고 있다.

gokjangchebiflo는 우리나라 北部에 나나 금강제비꽃은 與他야마(T. Uchiyama)의 採品(金剛山)에 依하여
Viola serpens로 報告되었던 것을 118中井博士가 1916年 8月 5日 金剛山 温井里에서 再採集(成大
標本室에도 같은 날작의 標本이 一枚있음)하여 1919年에 新種으로 記載한 것인데 119 그때 北北
熙川, 成南 千佛山, 黃海 長壽山, 京畿 加平, 江原郡, 雪岳山 五台山에서 알림으로 中部以北의 深
山에 나는 것으로 되어 있다. 京畿 鐵馬山과 北部 비장산에 남고 하나 筆者는 確認하지 못하였다.

生體觀察에 依하면 금강제비꽃이 體的으로 大形이고(사진 1, 2参照) 根莖에서 細長한 根枝を 蛋
分 아니라 보다 柔軟하여 잘 부티기만.

두은제비꽃은 우리나라 北部의 深山 沼澤地周邊 또는 河岸의 植生地에 나며 根茎은 긴게 열로
벌으며 根叢의 마디가 긴고 그 끝에서 新株가 生기라는 것이다. 119

gokjangchebiflo節 3種의 學名을 整理하여 다음과 같다.

Viola rossii Hemsley ex Forber et Hemsley in Journ. Linn. Soc. 23 : 54 (1886) —Palibin, Consop.
Mag. 30 : 286 (1916); Chosen-Shyokubutsu p. 123, no. 150, f. 136 (1914); in Bull. Soc. Bot. France

Viola Franchettii Boissieu in Bull. Soc. Bot. France 47 : 321 (1900), pro major. p.—Miyabe et Kudo

1972년

고영제비꽃 [분포] 한국, 일본, 만주, 중국.

금강제비꽃 [분포] 한국(중부 이남), 만주.

Viola epipisila spp. repens var. palustroides (W. Becker) W. Becker et Hultén in Arkiv. f. Bot. 22 A—3, 4 (1928)

**누은제비꽃, 보호제비꽃 (李昌福 1969) [분포] 한국(北部), 日本(千島, 樺太), 시베리아, 北米(西部)

2) 形態的 觀察

(1) 外部形態

금강제비꽃과 고영제비꽃은 多年生草本으로 잎의 外形과 根莖의 모양은 類似하나 금강제비꽃의 잎이 보다 大形이고 根莖의 薄葉가 있는 것으로 区別되어 왔다(사진 1, 2参照). 筆者들은 兩種의 잎을 比較한 바 다음 表 1과 같다. 表에서 보는 바와 같이 業柄은 生育地에 따라 差異가 著しく 別意味が 없으나 잎의 巾과 長い에는 많은 差異가 있다. 榛은制비꽃은 標品을 얻지 못하여 比較는 못했으나 根莖에 薄葉가 있는 것으로 보아 금강제비꽃에 類似한 品種로 보인다.

Table 1.

<table>
<thead>
<tr>
<th>Sp. name</th>
<th>Elements</th>
<th>leaves width</th>
<th>leaves length</th>
<th>petiole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>max.</td>
<td>min.</td>
<td>aver.</td>
</tr>
<tr>
<td>V. diamantiaca</td>
<td>14.5</td>
<td>8.0</td>
<td>10.6</td>
<td>12.7</td>
</tr>
<tr>
<td>V. rossii</td>
<td>8.0</td>
<td>5.4</td>
<td>6.3</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(2) 內部形態

① 금강제비꽃

i) 쳐리 (Plate I, A)

황단면은 평행하고 木部와 皮部는 거의 같은 넓이로 發達되었으며 皮貯組織은 厚膜柔組織로 比
Fig. 1.
V. diamantica

Fig. 2.
V. rossii

次の不等形이고 드문드문 유관속이 도피되어 있다. 厚膜柔組織内에는 肥溝 (Ca-oxalate)이 있고 유관속주위는 1구의 넓이로 도피되어 있으며 그간의는 髓部가 環状으로 배열되어 있으며 유관속은 의사 포위유관속으로 木部의 導管은 髓部 中心으로 密集되어 있고 髓는 厚膜柔組織으로 이루어져 있다.

ii) 잎의 表皮 (Plate II. A, III. A)

氣孔은 裏面에서만 観察되며 單細胞毛가 드문드문 있다. 氣孔은 2〜3數性的 波狀表皮細胞와 연결되어 있고 크기는 1.85×1.60mm이다.

iii) 主 脈

主脈部의 最大部은 心臓形을 이루고 있으며 柔細胞는 거의 圓形이고 柔細胞内에는 수산식회결정이 도피하고 있다. 上下兩面의 表皮는 短形의 單細胞毛가 있으며 中央部 유관속은 의사포위유관속을 이루고 있다.

(2) 고간계바초

i) 뿌리 (Plate I.B)

氣孔은 側面에서만 観察되고 長細胞毛가 각각중에서 뿌리에 도피되어 있으며 皮部柔組織은 거의 卵形이고 厚膜柔組織이며 柔組織内에는 수산식회결정이 密集되어 있다. 유관속은 의사포위유관속이고 木部組織의 導管이 도피되어 있으며 木部柔組織은 거의 厚膜柔組織으로 도피되어 있다.

ii) 잎의 表皮 (Plate II. B, III. B)

氣孔은 下面表皮에서만 観察되며 單細胞毛가 급강계바초보다 도피되어 있다. 氣孔은 2〜3數性的 波狀表皮細胞와 연결되어 있고 크기는 2.66×2.00mm이다.
3) 成分検索

上記한 실험 방법에 의하여 금강체비꽃과 고갈체비꽃의 일, 뿌리 및 종자에의 성분을 검색한 결과, 뿌리의 TLC에 의해 나타난 스폰트는 Fig. 3, 4와 같고, 두 종의 일, 뿌리, 종자의 TLC, PPC에 의하여 얻은 Rf값과 UV하의 색도는 Table II, III과 같다.

본 실험 결과, 종자는 두 종이 모두 3개의 free amino acid가 검출되었으나, 일과 뿌리에서는 금강체비꽃이 스폰트의 수가 약간 많아 성분상으로도 구별이 된다.
Fig. 3. Reproduction of T.L.C.
A: Leaves of V. diamantiaca
B: Leaves of V. rossii

Fig. 4. Reproduction of T.L.C.
A: Roots of V. diamantiaca
B: Roots of V. rossii

Table II. Rf values of the spot detected from MeOH EX. TLC

<table>
<thead>
<tr>
<th>Sample</th>
<th>Part</th>
<th>Rf values (×10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola diamantiaca</td>
<td>leaf (a)</td>
<td>4.0 (Br.) Br. 4.7 (p.b) 6.5 (p.b) 7.0 (p.b)</td>
</tr>
<tr>
<td></td>
<td>root (b)</td>
<td>7.5 (p.b)y 8.1 (v)y 9.4 (Br.)y 9.8(p.b)p.y*</td>
</tr>
<tr>
<td></td>
<td>seed (c)</td>
<td>3.8 (v) 6.5(b) 7.2(b) 8.5(y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 d.b (alanine) 7.5 d.b 8.5 d.b</td>
</tr>
<tr>
<td>Viola rossii</td>
<td>leaf (a)</td>
<td>7.4 (p.y) 8.2 (v.o) 8.8 (v.o) 9.0 (v.o)y</td>
</tr>
<tr>
<td></td>
<td>root (b)</td>
<td>9.4 (v.o)y 9.2 (y.b)y 9.7 (y.b)y</td>
</tr>
<tr>
<td></td>
<td>seed (c)</td>
<td>4.3 (v) 5.9(b) 8.5(y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3 d.b (alanine) 7.5 d.b 8.5 d.b</td>
</tr>
</tbody>
</table>

(c): PrOH: H₂O (64:36) 2% ninhydrin spraying () under of uv-ray,
※: Sodium carb. soln. spraying, Temp. 23°, Thin layer: 250mµ
Table III. Rf values of the spot detected from MeOH EX. PPC

<table>
<thead>
<tr>
<th>Sample</th>
<th>Part</th>
<th>Rf values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viola diamantiaca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf</td>
<td></td>
<td>0.02(v) b 0.58(b) y 0.64 (y.b) y.b</td>
</tr>
<tr>
<td>root</td>
<td></td>
<td>0.68(y.b) y.b 0.79(y)y</td>
</tr>
<tr>
<td>seed</td>
<td></td>
<td>0.56 (p.b) 0.65 (b) 0.69 (p.b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02 0.28 0.44 (d.b)</td>
</tr>
<tr>
<td>Viola rossii</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leaf</td>
<td></td>
<td>0.01(b)d.b 0.06(b)b 0.30(y.b)v</td>
</tr>
<tr>
<td>root</td>
<td></td>
<td>0.53(y).y.b 0.60(b)b 0.64(y.b)Br. 0.74(y)y.b ※</td>
</tr>
<tr>
<td>seed</td>
<td></td>
<td>0.48(p.b) 0.54(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.02 0.28 0.44 (d.b)</td>
</tr>
</tbody>
</table>

v: violet, b: blue, y:b: yellowish brown, d.b: dorknish blue, p.b: pale blue, y: yellow

developer: BuOH: AcOH: H₂O (4: 1: 2)
Temp: 23° Paper: Watmann No. 2
※Sod. Carb. Soln. Sprying, () Under of uv-ray: 2% ninhydrin spraying

3. 結論

(4) 금강제비꽃은 한국中部과 도 700m 以上에 나는 深山性이며 고갈제비꽃은 700m 以下의 全地域에
나다.

(2) 금강제비꽃은 根茎의 積極으로도 식별되고 일이 고갈제비꽃의 약 5배에 가깝게 크고 일자루가 유
연하여 장부러지는 特性을 지니고 있다.

(3) 금강제비꽃의 부리의 침묵면은 皮膚細胞は不等型이며 수선석화 결정이 적고 異常桿이 散在하
며 木部의 導管은 密集되어있다. 그러나 고갈제비꽃은 皮膚細胞는 等型이고 수선석화 결정이 많이
分布되어 있으며 皮膚部에는 异常桿이 없고 木部의 導管은 散在하는 점이 다르다.

(4) 兩種은 아 裏面에서만 氣孔이 觀察되며 크기는 고갈제비꽃이 약간 크고 單細胞 털도 고갈제비
꽃이 약 倍나 크며 上面表皮細胞는 別差가 없다(Plate I, II, III 參照).

(5) 蒸紙分配クロマトグラフィー(PCC) 與 薄層クロマトグラフィー(TLC)에 依한 成分検索結果 兩種의 ス
フォトペーパ에 있어서 금강제비꽃이 8개의 スポット, 고갈제비꽃이 7개의 반점이 나타나며 그 Rf 값도
 서로 다르므로 離別이 가능하다.

(6) 플라보노이드系化合物는 금강제비꽃은 네개, 고갈제비꽃에서는 5개이며 부리에서는 알카로이드
정색시에 양성인 스포트가 두개물에 다 나타나고 서로 다른 Rf 값을 가지는 점도 다르다.

参考文献

(1) 松村；帝國大學 理學大學植物標本目錄 p. 272, 1886
(2) Palibin ; Acta Horti Petropolitani Tomus XVII. Fas 1. p. 30–36, 1899
(4) 井猛之進；朝鮮植物全卷 p. 118–127, 1914
(6) 森為三；朝鮮植物名詞. p. 253–258, 1920
(10) 中井猛進；Viola 雑誌 1–3, Tokyo Bot. Mag. 36 : 52–61, 84–93, 118–121, 1922
Summary

This paper reported that *Viola diamantiaca* is grown in the middle area of South Korea above the altitude of 700m. and *Viola rossii* is grown below 700m in Korea.

Viola diamantiaca differs from *Viola rossii*; as it has runner, also it does have bigger leaves and it's petiole is easily broken while *Viola rossii*'s petiole breaks little hardly.

Root cross section of *Viola diamantiaca*; the forms of cortex parenchyma is unequal in size, contains vascular bundle, rare calcium oxalate crystals. Xylem parts vascular bundle has conjoined vessels.

Root cross section of *Viola rossii*; the cortex cells are almost equal in forms (size), found several calcium oxalate crystals, and contains no vascular bundle. Xylem parts of vascular bundle; Vessels are arranged densely compare with that of *viola diamantiaca*.

Lower leaf epidermis of *Viola diamantiaca*; unicellular hair is short and that of *Viola rossii*'s is longer than the *Viola diamantiaca*.

The size of the upper epidermis cells are equal. However, the stomata of *Viola rossii* is larger.

By PPC: In the *Viola diamantiaca*; flavonoid compound is four (4) and the flavonoid compound of *Viola rossii* is five (5) both contains alkaloid in the root. These two plants *Viola diamantiaca* and *Viola rossii* can be identified easily as shown in the above mentioned methods.