메밀속 (*Fagopyrum* Mill., 여뀌族－마다 lý科)의
花粉形態學의 研究

洪奭杓*, **崔正煥
(慶熙大學校 生物學科)

세계산 메밀속 (*Fagopyrum* Mill.)의 화분형태의 분류학적 잡제성을 찾고, 또한 异花柱性 현상을 가지는 모든 분류군의 花粉二型化 현상을 명확하게 밝히기 위하여, 총 12종 2 변종 (총 21개체)의 화분을 광학 및 주사전자 현미경을 이용하여 관찰하였다. 화분은 모두 단립, 삼각구형을 가진다. 화분의 외형은 장주형 혹은 아장주형 드물게 약장주형을 가진다 [P/E = 1.16–1.86]. 화분리의 크기는 중립이나, 대립이나 드물게 소립도 있다 (P = 24.1–68.2, E = 17.0–53.8). 溝口는 길고 (16.2–56.2, 높으며, 때로는 줄게 형성되어 있고 과립상이다. 표벽무늬는 모두 맑으며, 크게 두 가지 유형으로 나누어 볼 수 있다 (Type I: 다각형 맑으, Type II: 완만/난선상 맑으). 메밀屬 분류군중 异花柱性에 해당되는 8 분류군(7종, 2변종)에서는 花粉二型화를 발견할 수 있었고, 특히 *F. dibotrys*, *F. lineare* 및 *F. statica*에서는 두드리지게 나타났으며, 나머지 이화주성을 분류군에서는 그 차이가 미미하게 나타났다. 또한 본 연구를 통하여 *F. megacarpum*의 이화주성 및 화분형태학 현상이 처음으로 확인되었다. 단주화의 화분은 장주화의 화분에 비해 컸으며, 단주화와 장주화의 화분 크기에 대한 비율은 극축의 경우 1.05–1.48, 직도면의 지름의 경우 1.00–1.40으로 나타났다. 또한 단주화 화분의 맑은 장주화에 비해 큰 것으로 나타났다. 결론적으로 메밀屬의 이화주성 분류군의 장·단주화 사이의 花粉二型化는 분명하게 나타났고, 화분형태학적 자료는 메밀屬의 분류(특히 屬內分類を 재검토)에 있어서 어느 정도 유용한 형질로 판단되었다.

주요어: 화분이형화, 이화주성, 메밀属, 마디풀科, LM & SEM

메밀属 (*Fagopyrum* Mill.)은 마디풀科 (*Polygonaceae*), 여뀌族 (*Persicarieae Dum.*)에 속하는 다년/일년생 초본성식물로, 세계적으로 12–16종이 *Himalaya*와 중국 남서부 등, 주로 동아시아에 분포하고 *Fagopyrum snowdenii* (Hutch. & Dandy) S. – P.

교신저자: 전화 (02) 961-0842, 전송 (02) 966-5495
Hong 한 종만이 아프리카의 동부와 서부에 격리되어 국한적으로 서식한다(Hong, 1988). 그 중에 *F. esculentum* Moench(한국명: '메밀')은 유럽과 북아메리카 동서에서 중요한 식용 작물로 재배되고 있다(Mitchell and Dean, 1978; Campbell, 1995). 메밀과의 분류구의 중부산성의 주된 중심부는 Himalaya 지역, 특히 중국의 운남성과 네팔 지역으로 추정된다(Steward, 1930; Ye and Guo, 1992; Ohnishi, 1995; Hong, unpubl. data).

따라서 본 연구의 목적은 (1) 세계산 메밀속에 포함된 거의 모든 분류군의 해분형태를 광학현미경 (LM)과 주사전자현미경 (SEM)을 통해 상세히 기계하고 비교하며, (2) 외화환성, 분류군에서의 해분화학 현상을 탐색하여, 본 연구결과로부터 얻어지는 해분형태가 메밀속내의 계통 및 종간의 분류에 미치는 중요성을 파악하고자 시도되었다.
재료 및 방법

화분 관찰을 위해 해부현미경(Olympus, SZ-ST)하에서 대여받은 표본으로부터 꽃받침을 절취하여 Erdtman (1960)의 표준 초산분해(standard acetolysis method) 방법으로 처리하였다. 초산분해화분 중 일부는 광학현미경(LM: Olympus CH) 관찰을 위하여 70 % 메틸알코올에 보관되어있는 화분을 원심분리 후 상층액을 버리고, 상온에서 24 시간 건조시킨 후, 글리세린 젤리(glycerine-jelly)에 화분을 묻혀 파라핀으로 봉합시켜 연구 프레파라트를 제작하였으며, 각 분류군별로 개체당 10개의 화분임의 모양과 크기(극축길이, 적도지름, 구구의 길이 및 표면두께)를 측정하여 각 황실의 평균 및 표준편차를 구하였다.

주사전자현미경 관찰을 위해 초산분해하여 보관중인 화분을 알루미늄스터브(aluminium stub)에 올린 후 상온에서 건조시키고, 이온증착기(ion sputter, JEOL JFC-1100)를 이용 Au로 도포한 후, 주사전자현미경(SEM, JEOL JSM-5200)을 이용하여 15Kev/20 KeV에서 관찰하였다.

결 과

1. 매밀든 화분의 일반적 기재

매밀든의 화분잎은 단단(monad), 삼각형(tricolporate), 장방형(prolate) 또는 손상(subprolate)이며, 드물게 원형(prolate–spheroidal)이다(P/E = 1.16–1.86; Figs. 1–32, Table 1). 화분의 크기는 극축(polar axis)의 길이가 24.1–68.2 μm이고 적도 면적(equatorial diameter)은 17.0–53.8 μm로서, 중위값 산입, 대부분이 드물게 단단도
Table 1. Pollen morphological data with mean values and standard deviations of the genus *Fagopyrum*. All measurements are given in μm, except ratios. P (Polar axis); E (Equatorial diameter); P/E (ratio of P to E); CL (Cotlus length); ET (Exine thickness); Pi (Pin type); Th (Thrum type); Th/Pi (ratio of thrum to pin). * (monomorphic species).

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Voucher specimen</th>
<th>P</th>
<th>E</th>
<th>P/E</th>
<th>CL</th>
<th>ET</th>
<th>Th/Pi in P</th>
<th>Th/Pi in E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagopyrum dibotrys (Pi)</td>
<td>Kaulback 323 (E)</td>
<td>43.6 ± 2.44</td>
<td>30.2 ± 0.98</td>
<td>1.45 ± 0.05</td>
<td>35.5 ± 2.20</td>
<td>3.7 ± 0.39</td>
<td>1.48</td>
<td>1.31</td>
</tr>
<tr>
<td>Fagopyrum dibotrys (Th)</td>
<td>Polunin et al. 9131 (E)</td>
<td>64.3 ± 2.07</td>
<td>39.7 ± 2.76</td>
<td>1.62 ± 0.11</td>
<td>53.8 ± 2.28</td>
<td>4.1 ± 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. esculentum (Pi)</td>
<td>Reekmans (UPS)</td>
<td>44.2 ± 2.21</td>
<td>28.4 ± 2.34</td>
<td>1.57 ± 0.13</td>
<td>32.1 ± 4.54</td>
<td>3.1 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. esculentum (Th)</td>
<td>Batav s.n. (UPS)</td>
<td>46.6 ± 2.28</td>
<td>28.3 ± 1.53</td>
<td>1.65 ± 0.11</td>
<td>38.6 ± 2.39</td>
<td>3.2 ± 0.51</td>
<td>1.05</td>
<td>1.00</td>
</tr>
<tr>
<td>F. gilesii</td>
<td>Stewert 2412 (E)</td>
<td>35.1 ± 1.59</td>
<td>23.4 ± 1.54</td>
<td>1.51 ± 0.11</td>
<td>28.8 ± 2.53</td>
<td>2.0 ± 0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. giralddii</td>
<td>Peterson s.n. (G)</td>
<td>65.2 ± 2.99</td>
<td>50.9 ± 2.86</td>
<td>1.30 ± 0.08</td>
<td>49.8 ± 2.71</td>
<td>5.1 ± 0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. gracilipes</td>
<td>Maire 448 (E)</td>
<td>39.0 ± 2.47</td>
<td>28.3 ± 2.26</td>
<td>1.37 ± 0.11</td>
<td>28.6 ± 4.91</td>
<td>2.5 ± 0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. leptopodium var. leptopodium* (Pi)</td>
<td>Rock 10700 (E)</td>
<td>25.7 ± 1.18</td>
<td>19.8 ± 1.40</td>
<td>1.30 ± 0.05</td>
<td>20.1 ± 0.90</td>
<td>2.1 ± 0.13</td>
<td>1.15</td>
<td>1.17</td>
</tr>
<tr>
<td>F. leptopodium var. leptopodium* (Th)</td>
<td>Forrest 6168 (E)</td>
<td>29.8 ± 1.51</td>
<td>23.1 ± 1.25</td>
<td>1.30 ± 0.08</td>
<td>23.6 ± 1.47</td>
<td>2.5 ± 0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. leptopodium var. grossii* (Pi)</td>
<td>Maire 142 (E)</td>
<td>24.8 ± 0.74</td>
<td>18.4 ± 1.42</td>
<td>1.31 ± 0.13</td>
<td>17.9 ± 1.73</td>
<td>2.3 ± 0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. leptopodium var. grossii* (Th)</td>
<td>Maire 3 (E)</td>
<td>28.5 ± 1.00</td>
<td>21.0 ± 1.21</td>
<td>1.36 ± 0.07</td>
<td>21.7 ± 0.58</td>
<td>2.4 ± 0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. lineare (Pi)</td>
<td>Handel & Mazzetti 8569 (S)</td>
<td>26.0 ± 1.09</td>
<td>19.4 ± 0.70</td>
<td>1.34 ± 0.10</td>
<td>20.9 ± 0.87</td>
<td>2.4 ± 0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. lineare (Th)</td>
<td>Maire 402 (E)</td>
<td>38.1 ± 0.88</td>
<td>27.1 ± 1.01</td>
<td>1.40 ± 0.05</td>
<td>31.3 ± 0.73</td>
<td>2.8 ± 0.38</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>F. megacarpum (Pi)</td>
<td>Polunin et al. 2439 (E)</td>
<td>46.2 ± 1.52</td>
<td>36.4 ± 1.02</td>
<td>1.27 ± 0.01</td>
<td>37.0 ± 1.18</td>
<td>2.6 ± 0.24</td>
<td>1.18</td>
<td>1.10</td>
</tr>
<tr>
<td>F. megacarpum (Th)</td>
<td>Polunin et al. 3033 (E)</td>
<td>54.4 ± 2.78</td>
<td>40.0 ± 2.12</td>
<td>1.36 ± 0.11</td>
<td>45.6 ± 2.15</td>
<td>3.6 ± 0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. snowdenii</td>
<td>Taylor 2748 (BM)</td>
<td>39.7 ± 1.84</td>
<td>30.1 ± 1.72</td>
<td>1.32 ± 0.08</td>
<td>29.6 ± 1.74</td>
<td>2.8 ± 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. stacie (Pi)</td>
<td>Maire s.n. (G)</td>
<td>25.1 ± 0.94</td>
<td>19.7 ± 0.87</td>
<td>1.28 ± 0.07</td>
<td>19.1 ± 1.31</td>
<td>2.3 ± 0.33</td>
<td>1.43</td>
<td>1.32</td>
</tr>
<tr>
<td>F. stacie (Th)</td>
<td>Henry 9305 (E)</td>
<td>35.9 ± 1.30</td>
<td>26.0 ± 1.64</td>
<td>1.37 ± 0.10</td>
<td>27.8 ± 1.78</td>
<td>2.6 ± 0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. tataricum</td>
<td>Smith 6971 (UPS)</td>
<td>43.8 ± 1.74</td>
<td>24.4 ± 2.16</td>
<td>1.76 ± 0.10</td>
<td>36.9 ± 1.25</td>
<td>2.2 ± 0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. urophyllum (Pi)</td>
<td>Maire 2617 (K)</td>
<td>35.2 ± 2.40</td>
<td>25.0 ± 2.36</td>
<td>1.42 ± 0.12</td>
<td>27.3 ± 2.61</td>
<td>2.6 ± 0.20</td>
<td>1.11</td>
<td>1.21</td>
</tr>
<tr>
<td>F. urophyllum (Th)</td>
<td>Henry 9133 (E)</td>
<td>39.2 ± 6.10</td>
<td>30.4 ± 3.05</td>
<td>1.28 ± 0.12</td>
<td>32.3 ± 4.11</td>
<td>2.6 ± 0.32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figs. 1–8. SEM micrographs of pollen grains of *Fagopyrum*. (1–2) *F. gilesii*. – 1: EV (Equatorial View), 2: SSP (Surface Sculpturing Pattern). (3–4) *F. giralii*. – 3: SSP, 4: Detail of exine at aperture area. (5–7) *F. gracilipes*. – 5: EV, 6: Oblique polar view, 7: Detail of exine at aperture area. (8) *F. snowdenii*. – 8: Detail of exine at aperture area. 1, 5–6 to same scale; 2–3 to same scale; 4, 7–8 to same scale: scale bars on 1=10μm; 2, 4=1μm. – #G (granule).
관찰된다(Table 1). 溝口(colpus)는 길고(16.2~56.2μm), 넓으며, 때로는 줄게 형성되어 있고, 頸粒狀(graunule)의 형태로 보통 극축 가장자리까지 신장되어 있다(Figs. 5-6, Table 1). 表皮(exine)은 적도 부분보다 극축에서 다소 두껍다. 표면무늬는 모두 網狀(type)이나 분류군간에 다소 차이가 있는데, Type I [다각형의 방상 무늬(angular reticulate): 화분 표면에 있는 돌기의 격하실이 4~7각형으로 맡상을 이룸, Figs. 2, 7, 10, 12-14, 23-24, 29-30], Type II [완만/난전장 방상 무늬(non-angular/ruglo reticulate): Type I과 유사하나 網壁이 완만한/亂線狀 곡선으로 網腔을 이룸, Figs. 3, 25]의 두가지 유형으로 나누어 볼 수 있다.

A. Type 1: 다각형의 방상형 (angular reticulate) 표면무늬

1. *F. dibotrys* (D. Don) Hara (Figs. 11-13).

Pin type: 화분립의 크기는 극축길이가 41.2-(43.6)-46.0μm이고 적도면 지름은 29.2-(30.2)-31.2μm로 중립이며, 적도면 입상은 장구형이다 [P/E = 1.40-(1.45)-1.50]. 구구의 길이는 33.3-(35.5)-37.7μm이고, 표백 두께는 3.3-4.1μm이다(Figs. 11-12).

Thrum type: 화분립의 크기는 극축길이가 62.2-(64.3)-66.4μm이고 적도면 지름은 36.9-(39.7)-42.5μm로 대립이며, 적도면 입상은 장구형이다 [P/E = 1.51-(1.62)-1.73]. 구구의 길이는 51.2-(53.8)-56.1μm이고, 표백 두께는 3.7-(4.0)-4.5μm이다(Fig. 13).

Pin type: 화분립의 크기는 극축길이가 42.0-(44.2)-46.4μm이고 적도면 지름은 26.1–(28.4)-30.7μm로 중립이며, 적도면 입상은 장구형이다 [P/E = 1.44-(1.57)-1.70]. 구구의 길이는 27.6–(32.1)-36.6μm이고, 표백 두께는 2.9-3.3μm이다(Figs. 14-15).

Thrum type: 화분립의 크기는 극축길이가 44.3–(46.6)-48.9μm이고 적도면 지름은 26.8-(28.3)-29.8μm로 중립이며, 적도면 입상은 장구형이다 [P/E = 1.54-(1.65)-1.76]. 구구의 길이는 36.2–(38.6)-41.0μm이고, 표백 두께는 2.7-3.7μm이다(Fig. 16).

3. *F. gilesii* (Hemsl.) Hedberg (Figs. 1-2).

화분립의 크기는 극축길이가 33.5–(35.1)-36.7μm이고 적도면 지름은 21.9–(23.4)-24.9μm로 중립이며. 적도면 입상은 장구형이다 [P/E = 1.40-(1.51)-1.62]. 구구의 길이는 26.3–(28.8)-31.3μm이고, 표백 두께는 1.9-2.1μm이다.

4. *F. gracilipes* (Hemsl.) Dammer (Figs. 5-7).

화분립의 크기는 극축길이가 36.5–(39.0)-41.5μm이고 적도면 지름은 26.0–(28.3)-30.6μm로 중립이며, 적도면 입상은 장구형 또는 아장구형이다 [P/E = 1.26-(1.37)-1.48].
구구의 길이는 23.7-(28.6)-33.5μm이고, 표백 두께는 2.3-2.7μm이다.

⑤-1 F. leptopodum (Diels) Hedberg var. leptopodum (Figs. 17-18).

Pin type: 화분림의 크기는 극축길이가 24.5-(25.7)-26.9μm이고, 적도면 지름은 18.4-(19.8)-21.2μm로 대부분 중립이나 드물게 소립이며, 적도면 임상은 아장구형인데 간혹 장구형도 있다 [P/E=1.25-(1.30)-1.35]. 구구의 길이는 19.2-(20.1)-21.0μm이고, 표백 두께는 2.0-2.2μm이다 (Fig. 17).

Thrum type: 화분림의 크기는 극축길이가 28.3-(29.8)-31.3μm이고, 적도면 지름은 21.9-(23.1)-24.3μm로 중립이며, 적도면 임상은 아장구형이고 드물게 장구형도 있다 [P/E=1.22-(1.30)-1.38]. 구구의 길이는 22.1-(23.6)-25.0μm이고, 표백 두께는 2.3-2.8μm이다 (Fig. 18).

⑤-2 F. leptopodum (Diels) Hedb. var. grossii (Lévl.) Lauener & Ferguson (Figs. 19-20).

Pin type: 화분림의 크기는 극축길이가 24.1-(24.8)-25.5μm이고, 적도면 지름은 17.0-(18.4)-19.8μm로 소립 또는 중립이며, 적도면 임상은 아장구형인데 간혹 장구형도 있다 [P/E=1.18-(1.31)-1.44]. 구구의 길이는 16.2-(17.9)-19.6μm이고, 표백 두께는 2.1-2.5μm이다 (Fig. 19).

Thrum type: 화분림의 크기는 극축길이가 27.5-(28.5)-29.5μm이고, 적도면 지름은 19.8-(21.0)-22.2μm로 중립이며, 적도면 임상은 아장구형 또는 장구형이다 [P/E=1.29-(1.36)-1.43]. 구구의 길이는 21.1-(21.7)-22.3μm이고, 표백 두께는 2.2-2.6μm이다 (Fig. 20).

⑥ F. lineare (Sam.) Haraldson (Figs. 21-24).

Pin type: 화분림의 크기는 극축길이가 24.9-(26.0)-27.1μm이고, 적도면 지름은 18.7-(19.4)-20.1μm로 거의 중립이나 드물게 소립도 있으며, 적도면 임상은 아장구형 또는 장구형이다 [P/E=1.24-(1.34)-1.44]. 구구의 길이는 20.0-(20.9)-21.8μm이고, 표백 두께는 2.2-2.6μm이다 (Figs. 21, 23).

Thrum type: 화분림의 크기는 극축길이가 37.2-(38.1)-39.0μm이고, 적도면 지름은 26.1-(27.1)-28.1μm로 중립이며, 적도면 임상은 장구형이다 [P/E=1.35-(1.40)-1.45]. 구구의 길이는 30.6-(31.3)-32.0μm이고, 표백 두께는 2.4-3.2μm이다 (Figs. 22, 24).

⑦ F. snowdenii (Hutch. & Dandy) S.-P. Hong (Fig. 8).

화분림의 크기는 극축길이가 37.9-(39.7)-41.5μm이고, 적도면 지름은 28.4-(30.1)-31.8μm로 중립이며, 적도면 임상은 아장구형 또는 장구형이다 [P/E=1.24-(1.32)-1.40]. 구구의
길이는 27.9–(29.6)–31.3μm이고, 표백 두께는 2.4–3.2μm이다.

8. *F. statice* (Lév.) H. Gross (Figs. 27–30).

Pin type: 화분림의 크기는 극측 길이가 24.2–(25.1)–26.0μm이고 적도면 지름은 18.8–(19.7)–20.6μm로 소립 또는 중립이며, 적도면 입상은 야장구형인데 간혹 장구형도 있다 [P/E = 1.21–(1.28)–1.35]. 구구의 길이는 17.8–(19.1)–20.4μm이고, 표백 두께는 2.0–2.6μm이다 (Figs. 27, 29).

Thrum type: 화분림의 크기는 극측길이가 34.6–(35.9)–37.2μm이고 적도면 지름은 24.4–(26.0)–27.6μm로 중립이며, 적도면 입상은 장구형인데 간혹 야장구형도 있다 [P/E = 1.27–(1.37)–1.47]. 구구의 길이는 26.0–(27.8)–29.6μm이고, 표백 두께는 2.2–3.0μm이다 (Figs. 28, 30).

9. *F. megacarpm* (Hara) Hara (Figs. 25–26).

Pin type: 화분림의 크기는 극측길이가 44.7–(46.2)–47.7μm이고 적도면 지름은 35.4–(36.4)–37.4μm로 중립이며, 적도면 입상은 야장구형이다 [P/E = 1.26–(1.27)–1.28]. 구구의 길이는 35.8–(37.0)–38.2μm이고, 표백 두께는 2.4–2.8μm이다 (Fig. 26).

Thrum type: 화분림의 크기는 극측길이가 51.6–(54.4)–57.2μm이고 적도면 지름은 37.9–(40.0)–42.1μm로 거의 중립이며, 적도면 입상은 장구형 또는 야장구형이다 [P/E = 1.25–(1.36)–1.47]. 구구의 길이는 44.5–(45.6)–47.8μm이고, 표백 두께는 3.2–4.0μm이다 (Fig. 25).

10. *F. tataricum* (L.) Gaertn. (Figs. 9–10).

화분림의 크기는 극측길이가 42.1–(43.8)–45.5μm이고 적도면 지름은 22.2–(24.4)–26.6μm로 중립이며, 적도면 입상은 장구형이다 [P/E = 1.66–(1.76)–1.86]. 구구의 길이는 35.7–(36.9)–38.2μm이고, 표백 두께는 2.0–2.4μm이다.

Pin type: 화분림의 크기는 극측길이가 32.8–(35.2)–37.6μm이고 적도면 지름은 22.6–(25.0)–27.4μm로 중립이며, 적도면 입상은 장구형 또는 야장구형이다 [P/E = 1.30–(1.42)–1.54]. 구구의 길이는 24.7–(27.3)–29.9μm이고, 표백 두께는 2.4–2.8μm이다 (Fig. 31).

Thrum type: 화분림의 크기는 극측길이가 33.1–(39.2)–45.3μm이고 적도면 지름은 27.4–(30.4)–33.5μm로 중립이며, 적도면 입상은 장구형이고 야장구형도 드물게 관찰된다 [P/E = 1.16–(1.28)–1.40]. 구구의 길이는 28.2–(32.3)–36.4μm이고, 표백 두께는 2.3–2.9μm이다 (Fig. 32).
B. Type II: 완연/난선상 망상형 (non-angular/ruglo reticulate) 표면무늬

(F. giraldii (Dammer & Diels) Haraldson (Figs. 3-4).

화분형의 크기는 극대값이 62.2-(65.2)-68.2μm이고 적도면 지름은 48.0-(50.9)-53.8 μm로 대립이며, 적도면 입상은 약상구형 또는 장구형이다 [P/E=1.22-(1.30)-1.38]. 구구의 길이는 47.1-(49.8)-52.5μm이고, 표벽 두께는 4.8-5.4μm이다.

2. 異花柱性(heterostyly)과 花粉二型化(pollen dimorphism)

메밀属내에서 異花柱性현상을 보이는 종은 현재까지 6종으로 알려져 있었으나(Campbell, 1995; Ye and Guo, 1992), 본 연구 결과 花粉二型化현상을 보이는 종은 새로이 밝혀진 F. megacarpum를 포함하여 모두 8 분류군(7종, 2번종)이다. 각각의 분류군에서 극측의 길이나 적도면 지름이 각각 短柱花(thrum)의 화분이 长柱花(pin)의 화분보다 다소 길다(Th/Pi in P=1.05-1.48, in E=1.00-1.40). 특히 F. dibotrys, F. lineare, F. statice에서의 단주화의 화분이 장주화의 화분보다 현저하게 크고, 나머지 분류군에서는 그 차이가 미미하게 나타났다(Table 1). 網絡의 크기는 단주화의 화분이 장주화의 화분보다 대체로 더욱 크게 나타났다(Figs. 12-13, 29-30).

고찰

세계산 메밀属 12종, 2번종, 21개체의 花粉을 조사하였다. 그 결과 본 属의 화분은 다양 한 크기를 보이며 발아구는 삼공구형으로 중간에 두드러진 형태적 차이를 보이지 않으나, 화분의 크기와 표면 구조에서 다소 차이가 있었다. 본 属의 화분의 표면 무늬는 모두 망 상형 구조를 갖는데, 대부분의 분류군은 다각형의 망상형 구조(Type I)이나 F. giraldii는 완만한 곡선의 망상형을 보이고, F. megacarpum은 난선상 망상무늬(Type II)를 보여 크게 두가지 유형으로 나누어질 수 있었다.

최근에 Hong (1997)은 아프리카산 *Oxygonum* Burch. ex Campd. 종에 포함된 8종의 차관형과 싸이카디화에 대한 연구를 수행하였는데, 화분은 거의 모두 단단하고, 산화형이며, 적도상 입상이 경구형/아마구형이고, 화분 표면무늬는 망상무늬를 가지는 것으로 보고하고 있다. 본 연구 결과와 비교해 볼 때 메밀주네의 화분은 *Oxygonum* 종의 화분과 발아구의 형태, 수, 매열, 그리고 표면무늬, 두 외부 형태가 거의 흡사하여 두 속간에 어느 정도 유연 관계가 있는 것으로 사료된다. 또한 두 종(*Fagopyrum, Oxygonum*)에 포함된 여러 부류군의 내화피가인(Inner tepal)의 새로운 유수를 하고 있어, 이러한 귀연성을 어느 정도 말할 수 있지만, 이는 풍화수분기작(insect pollination mechanism)과 연관되어 비슷한 세포유형을 가지는 수력진화의 경우로 해석된다 (Hong, unpubl. SEM

본 연구 결과 花粉二型化 현상을 보이는 종은 새로운 밝혀진 *F. megacarpum*을 포함하여 모두 8 分類群으로 각각의 분류군에서 극축의 길이나 적도 폭 지름이 각각 단지 대(thrum)의 화분이 長柱花(pin)의 화분보다 다소 길다. 특히 *F. dibotrys*, *F. lineare*, *F. statice*에서는 단주화의 화분이 장주화의 화분보다 현저하게 크고, 나머지 분류군에서는 그 차이가 미미하게 나타났다. 網 acetium의 크기는 단주화의 화분이 장주화의 화분보다 대체로 더 크게 나타났다 (*cf. Table 1*). 일반적으로 동일 종에서 단주화의 화분은 장주화의 화분에 비해 비교적 크기 큰 경향이 나타나는데, 이것은 수분과 수분을 위한 에너지의 촉적과 관련이 있는 것으로 여겨지고 있다. 즉 화분이 주부에 부착되어 화분판이 신장되고 자방에 도달하기까지 많은 시간과 에너지가 필요하므로 단주화의 화분은 보다 많은 에너지를 비축하기 위해 장주화의 화분보다 더 큰 것으로 추정해 볼 수 있다 (*Gander, 1979; Hong, 1991, 1997; Dulberger, 1992*).

결론적으로 메밀 屬의 화분학적 형질은 節間限界 (sectional delimitation)이나 種間分類 (interspecific classification)에 유용하였다. 그러나 냉동경단 방법을 이용한 주사전자현미경(SEM)의 관찰 혹은 胎果電子顯微鏡(TEM)을 통하여 內側發芽口 (endoaperture)등 화분의 내부 구조, 表面의 미세 구조 및 同一 分類群의 지역적 변이에 대한 것 등에 대한, 상세한 연구가 추가되어야 할 것이다. 또한 異花柱性에 대한 정확한 이해를 위해 花粉二型化 현상을 가진 분류군의 화분 표면무늬와 주두와의 관계를 파악하는 연구가 후후에 진행되어야 할 것이다.

사 사

본 연구는 1995년도 한국과학기술진흥재단의 '95 植物薬理조성비 真武공모과제 연구비(과제 번호: 01-D-0425)에 의하여 연구되었습니다. 귀중한 표본 대여를 허락해 주신 BM, E, G, K, S, UPS의 각 표본관장 및 관계자에게 아울러 감사의 드립니다. 또한 논문의 심사과정 중 유용한 조언을 주신 위명의 두분 심사자들과 본 연구과정 중 여러모로 도움을 준 경희대 생물학과 식물분류학연구실 오일찬, 손세희, 한매자, 박경원에게 고마움을 전합니다.
인용문현

Hemsley, W. B. 1886. *Polygonum gilesii* Hemsl. sp. nov. Hooker’s Icon. Pl. 8: 100, Table 1756.

Appendix. Specimens examined (*pin type, **thrum type).

Pollen morphology of the genus *Fagopyrum* Mill.
(Persicarieae–Polygonaceae)

Hong, Suk-Pyo* and Jung-Hwan Choi
(Department of Biology, Kyung Hee University, Seoul 130–701, Korea)

Abstract

To find out the systematic potentiality of pollen morphology of *Fagopyrum* Mill. and to clear up the pollen dimorphism in the heterostylyous taxa of the genus, the pollen of 12 species including two varieties of *Fagopyrum* was investigated by the light microscopy (LM) and the scanning electron microscopy (SEM). The pollen grains of studied taxa are monad, 3-colporate. The shape of pollen grains is prolate or often subprolate/prolate-spheroidal \[\text{P/E = 1.16–1.86} \]. The size of pollen is \[\text{P = 24.1–68.2\,\mu m, E = 17.0–53.8\,\mu m} \] (mostly medium or large, rarely small). The colpi are wide, rarely narrow \[(16.2–56.2\,\mu m) \], with granules. The exine ornamentation is reticulate, and largely two types can be recognizable (i.e., Type I: angular reticulate, Type II: non-angular/ruglo reticulate). The pollen dimorphism has been shown in eight taxa (7 species, 2 varieties) which were known to be heterostylyous plants. Dimorphism of pollen size and exine ornamentation in relation to distyly in all taxa is well correlated, and is significantly different in *F. dibotrys, F. lineare* and *F. statice*, while is weakly differed in the rest of examined heterostylyous taxa. From the present study, the heterostyly and pollen dimorphism of *F. megacarpum* are clearly confirmed for the first time. The pollen grains from short-styled (thrum) flowers are larger than those from long-styled (pin) flowers. The ratios of thrum to pin pollen size vary from 1.05 to 1.48 in polar axis, and from 1.00 to 1.40 in equatorial diameter. In general, the pollen grains of the thrum-type have larger lumina than those of the pin-type. In conclusion, it is clearly shown the pollen dimorphism between two morphs (i.e., pin, thrum) of the examined distylyous taxa. Even though the present palynological data may not be so helpful for evaluating the infrageneric classification of *Fagopyrum*, they are considered to be somewhat useful characters among species, particularly in heterostylyous taxa.

Key words: Pollen dimorphism, heterostyly, *Fagopyrum*, Polygonaceae, LM & SEM.

*Corresponding Author: Phone +82–2–961–0842, FAX +82–2–966–5495