한국산 팽이사초아속(subgen. *Vignea* Nees) 6절의
분류 형질에 관한 연구

오 용 자* · 조 미 정
(성신여자대학교, 자연과학대학, 생물학과)

주요어: 통보리사초절, 나도벌사초절, 겹개구리사초절, 총실사초절, 타래사초절, 산사초절

*교신저자: 전화, 전송 (02) 920-7170, 전자우편: ycoh@cc.sungshin.ac.kr
(접수: 2003년 6월 2일, 원고: 2003년 8월 19일)
사초과(Cyperaceae) 사초속(Carex Linné) 식물은 Kükenthal(1909)에 의해 4아속
(Primocarex Kükenthal, Vignea Nees, Indocarex Kükenthal, Eucarex Coss. et Germ.)으로
분류하였다(Smith and Faulkner, 1976; Reznicek, 1990). Ohwi(1936)는 「일본 식물지」에
Vignea Nees 아속과 Eucarex Coss. et Germ. (=Carex) 아속으로 나누어 수록하면서 한국산
사초속 식물 202종을 암묵과 수묵이 한 개의 아속에 배열되고, 화축(peduncle)이 발달되어 있
지 않았으며, 화서의 주축을 감싸고 있는 조/sheath)의 내부(cladophyll)가 발달되지 않은
것을 채운사초아속(Vignea Nees)에, 반면 수묵과 암묵이 각각 단생화 이설을 이루며, 화축이
발달되고, 화서의 주축을 감싸고 있는 조의 내부가 발달한 것을 사초아속(Carex Coss. et
Germ.)이라 하였다. 특히 이 중 이식의 모양, 배열, 암술머리의 수와 과단의 크기 등으로 채
운사초아속은 14절로, 사초아속은 42절로 나누어 사초과 사초속을 총 56절로 나누었다. 오
Nees, Carex Coss. et Germ.) 40절로 나누었다. 한국산 채운사초아속에 속하는 절 식물
중에서 Lee and Oh(1971)는 채운사초필의 채운사초(Carex neurocarpa Maxim.), 산채운사초
(C. leiorhyncha C. A. Mey.), 애채운사초(C. leaevisima Nakai), 도래채운사초(C. nubigena
Don var. albata(Boott) Kük., ex Matsum.) 태래사초필의 태래사초(C. maackii Maxim.)와 산
채운필의 산채운(C. curta Gooden.)을 대상으로 하는 표식형 연구를 한 바 있다. 오와 와(1987)
는 나도벌사초필의 나도벌사초(C. gibba Wahlenb.)와 동보리사초필의 동보리사초(C.
kobomugi Ohwi)의 표식형 연구를 한 바 있다. 또 오와 와(1989)는 나도벌사초필의 나도
벌사초의 수과와 인편 표식형에 관한 연구를 한 바 있다. 허(1996)는 한국산 사초속 식물 가운
데 채운사초아속 7절(sect. Fœtidæ Tuckerm., sect. Divisæ Christ, sect. Multifloræ Kunth,
속하는 9종의 화서의 모양, 화서내 꼬마이삭의 간격, 화서내 꼬마이삭 개수를 연구하였다. 특
히 화서내 꼬마이삭의 평균 개수가 3-9개이고 꼬마이삭의 모양이 좁은 타원형, 또는 넓은 도
만형이고 암묵의 개수는 화서의 정단으로 갈수록 감소하다가 증가하는 분류군(전화리사초필
의 전화리사초, 대замен사초필의 대замен사초, 산채운필의 산채운, 나도벌사초필의 나도벌사초와
중
실사초필의 중실사초)이 있으며, 꼬마이삭의 평균 개수는 17-28개이고 꼬마이삭의 모양은 난
형이고 암묵의 개수는 화서의 정단으로 갈수록 증가, 감소를 반복하는 분류군(채운사초필의
애채운사초, 산채운사초, 채운사초와 태래사초필의 태래사초)으로 나누어 짐을 밝혔다. 오
사초필 7종을 대상으로 과단 인편과 수과의 외부형태 및 표식형, 앞의 표식형과 줄기의 단면
등을 광학현미경 및 주사전자현미경으로 관찰하여 그 결과 얻어진 경향·정성적 형질의 차이
로 나타난 특성으로 각각의 점과 종을 분류 동정하는데 유용하게 사용될 수 있음을 지적하였
다. 최근 Dan and Hoshino(1994)는 주사전자현미경을 사용하여 사초속 식물 43분류군의 수
과 표면의 표식구성요소의 미세구조를 연구하였다.

본 연구에서는 Ohwi(1936)가 발표한 채운사초아속(Vignea Nees) 11절 중 그간 부분적으

228
로 연구가 수행된 진피리사초절(sect. *Foetidae* Tuck.), 대합사초절(sect. *Divisae* Christ.), 가
는사초절(sect. *Dispermae* Ohwi), 까락사초절(sect *Arenariae* Kunth)과 팽이사초절(sect
Multiflora Kunth)에 관한 식물을 제외하고, 통보리사초절(sect. *Macrocephalae* Kük.)의 통
보리사초, 나도벌사초절(section *Gibbae* Kük.)의 나도벌사초, 점개구리사초절(sect. *Stellulatae*
Kunth)의 점개구리사초, 충실사초절(sect. *Elongatae* Kunth)의 충실사초, 타래사초절(sect.
Ovales Kunth)의 타래사초, 산사초절(sect. *Heleonastes* Kunth)의 산사초와 호밀사초에 대해
외부형태적인 특징을 체계하고, 주사전자현미경과 광학현미경을 사용하여 현재까지 연구된
바 없는 과낭, 수과, 잎의 표피형을 비교 관찰하고, 허(1999)가 발표한 결과와 비교 분석함으
로써 이들 형질들로 팽이사초아속에 속하는 절의 형질을 조사하여 종의 정확한 동정에 활용
하고자 하였다.

재료 및 방법

1. 재료

본 연구에 사용된 재료는 성신여자대학교(SWH), 서울대학교 농업생명과학대학(SNUA)에
소장된 식물표본을 사용하였다. 사용된 재료는 appendix에 제시하였다. Ohwi(1996)가 발표한
Macrocephalae Kük의 *C. macrocephala* Willd., sect. *Cyperoideae* Tuck.의 *C. cyperoides*
Murr., sect. *Elongatae* Kunth의 *C. planata* Fr. et Sav., *C. rochebrunii* Fr. et Sav.와 *C.
et Van., *C. traiziscana* Fr. Schm., *C. nemurenos* Fr., *C. brunnescens* Poir., *C.
pseudololiiacea* Fr. Schm와 sect. *Stellulatae* Kunth의 *C. omiana* Fr. et Sav.는 국내에는 분
포하지 않아 제외하였다. 그리고 산사초절(sect. *Heleonastes* Kunth)의 산타래사초(*C.
bipartita* All) 큰산사초(*C. mackenziei* V. Kercz.)와 벌사초(*C. tenuiflora* Wahlenb.)는 확증
표본이 없어 제외하였다.

2. 방법

1) 외부형태 관찰

각 종의 성숙한 개체의 줄기, 잎, 잎하, 과낭, 수과, 비늘조각, 포의 길이와 너비, 모양과 과
낭, 비늘조각의 윗부분과 포의 수를 조사하였다. 각 형질의 측정은 성숙한 식물을 20개체씩
조사하여(단, 호밀사초외) 최소차-평균차-최대차(cm)를 구하였다. 그리고 수과와 과낭의 전
체적인 외부형태는 해부현미경(Olympus SZ-PT)과 주사전자현미경(Jeol, JSM-840A)으로 관
찰하였다.

2) 수과와 과낭 및 잎의 표피형 관찰
광학현미경(LM)에 의한 일의 표피형 관찰은 각 개체 중 완전히 성장한 개체의 중간부분의 잎을 선택하여 100℃에서 끓여 연화시킨 후 표피를 급여 1% safranin용액으로 염색한 후 광학현미경(Olympus BX60)으로 관찰하였다. 기공복합체(stomatal complex)의 크기는 공변분포와 부세포를 포함한 길이와 너비를 micrometer로 20개체씩 측정하여 최소치-평균치-최대치(£m)를 구한 후, 길이와 너비의 비(L/W)를 구하였고, 1mm²내의 기공복합체의 밀도를 조사하였다. 주사전자현미경에 의한 일의 표피형 관찰은 각 세포를 2.5% glutaraldehyde용액에 넣어 4℃에서 1시간 동안 전처리하였다. 이것을 0.1M phosphate buffer(PH 6.8)에 30분씩 3번 세척한 후, 1% OsO₄용액에서 1시간 동안 후처리하였고, 다시 0.1M phosphate buffer(PH 6.8)에 30분씩 3회 세척 후, 50%, 70%, 80%, 90%, 95%, 100% ethanol에 단계적으로 각 10분간 탈수과정을 거친 후 isooamy/lacetate에 2차 치환시켰다. 주사전자현미경에 의한 표피와 과낭의 표피형 관찰은 Toivonen and Timonen(1976)의 방법에 따라 sulfuric acid : acetic anhydride (1 : 9) 용액에 수분은 12 - 36시간 정도, 과낭은 2 - 5시간 정도 담가 린넨층과 바칼 세포벽을 제거한 후 증류수로 세척하였다. 전 과정을 거친 세포를 critical point dryer로 건조하겠나, 실온에서 건조한 후, 주사전자현미경(Jeol, JSM-840A)로 관찰하였다. 기체에 사용된 용어는 Metcalfe and Gregory(1964), Hilu(1984), Oh(1987) 와 오와 이(2001a,b)에 따랐다.

결과

1. 외부형태 형질

줄기(stem) : 줄기는 보통 망상줄기로 모여나거나 동치난다. 줄기의 길이에 있어서 겉개구리사조(45.10 - 48.40 - 54.60 cm)가 가장 길었고 충실사조(11.00 - 20.32 - 41.70 cm)가 가장 짧았다. 너비에서는 통보리사조(0.30 - 0.35 - 0.45 cm)가 가장 넓고 충실사조(0.03 - 0.06 - 0.12 cm)가 가장 좁았다(Table, 1-1, 1-2). 줄기의 단면모양은 통보리사조는 주름지고 원형(winding, circular)이며 나도별사조, 겉개구리사조, 산사조는 주름지고 납작한 삼각형(winding, shallowly triangular), 충실사조는 주름지고 2면이 흘어있는 삼각형(winding, 2-furrowed triangular), 타래사조, 호밀사조는 주름지고 아주 납작한 삼각형(winding, very shallowly triangular)을 나타낸다(Table, 1-1, 2-1, 2-2).

잎(leaf) : 줄기의 일부분에서 부터나며 3줄로 어긋난다. 통보리사조는 잎잎이 두꺼운 가죽질이며 장애가 있고, 나머지 분류군의 잎잎은 비교적 얇고 편평하다. 잎의 길이에 있어서 나도별사조(31.30 - 45.56 - 79.50 cm)가 가장 길고, 호밀사조(18.00 - 21.83 - 24.50 cm)가 가장 짧게 나타났다. 잎의 너비는 통보리사조(0.30 - 0.63 - 0.80 cm)가 가장 넓고 충실사조(0.08 - 0.16 - 0.20 cm)가 가장 좁게 나타났다(Table, 1-1, 1-2).

이삭(spike) : 단청화로 보통 화서 줄기끝에 수꽃이삭이 달리고, 암꽃이삭은 측면에 달리는 데, 통보리사조는 암·수 각으로이며, 나머지 분류군은 한 개의 이삭안에 암꽃이 윗부분에

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. kobomugi</td>
<td>C. gibbae</td>
<td>C. echinata</td>
<td>C. remotiuscula</td>
</tr>
<tr>
<td></td>
<td>W. 0.30–0.35–0.45</td>
<td>0.10–0.16–0.22</td>
<td>0.09–0.10–0.10</td>
<td>0.03–0.06–0.12</td>
</tr>
<tr>
<td></td>
<td>W. 0.30–0.63–0.80</td>
<td>0.30–0.42–0.90</td>
<td>0.12–0.17–0.20</td>
<td>0.08–0.16–0.20</td>
</tr>
<tr>
<td>Pistillate spike</td>
<td>L. 4.30–5.48–6.80</td>
<td>0.85–0.99–1.35</td>
<td>0.50–0.53–0.60</td>
<td>0.30–0.40–0.50</td>
</tr>
<tr>
<td></td>
<td>W. 2.40–3.38–4.00</td>
<td>0.30–0.44–0.55</td>
<td>0.30–0.35–0.40</td>
<td>0.15–0.23–0.35</td>
</tr>
<tr>
<td>scale</td>
<td>L. 1.10–1.34–1.52</td>
<td>0.15–0.25–0.35</td>
<td>0.09–0.20–0.21</td>
<td>0.20–0.24–0.30</td>
</tr>
<tr>
<td></td>
<td>W. 0.40–0.50–0.60</td>
<td>0.10–0.16–0.20</td>
<td>0.09–0.10–0.10</td>
<td>0.06–0.09–0.11</td>
</tr>
<tr>
<td>Staminate spike</td>
<td>L. 4.00–5.86–6.70</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>W. 1.50–1.96–2.20</td>
<td>none</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td>scale</td>
<td>L. 1.40–1.43–1.50</td>
<td>0.15–0.18–0.25</td>
<td>not confirmed</td>
<td>0.14–0.24–0.30</td>
</tr>
<tr>
<td></td>
<td>W. 0.30–0.38–0.45</td>
<td>0.10–0.14–0.25</td>
<td>not confirmed</td>
<td>0.09–0.13–0.15</td>
</tr>
<tr>
<td>Involute</td>
<td>L. 3.70–5.03–8.60</td>
<td>5.80–13.11–26.00</td>
<td>none</td>
<td>5.50–7.67–11.70</td>
</tr>
<tr>
<td></td>
<td>W. 0.20–0.30–0.40</td>
<td>0.07–0.19–0.50</td>
<td>none</td>
<td>0.03–0.05–0.10</td>
</tr>
<tr>
<td>Perigynium</td>
<td>L. 1.05–1.16–1.30</td>
<td>0.28–0.31–0.35</td>
<td>0.30–0.30–0.31</td>
<td>0.30–0.31–0.33</td>
</tr>
<tr>
<td></td>
<td>W. 0.30–0.38–0.55</td>
<td>0.15–0.19–0.22</td>
<td>0.13–0.14–0.15</td>
<td>0.08–0.09–0.10</td>
</tr>
</tbody>
</table>

Minimum–Average–Maximum (unit: cm), L.: length, W.: width
바는 통보리사초(0.20-0.30-0.40cm)가 가장 넓고 충실사초(0.03-0.05-0.10cm)가 가장 좁게 나타났다(Table 1, 1-1, 1-2).

비늘조각(scale) 수꽃 비늘조각의 모양은 통보리사초와 산사초가 타원형, 나도벌사초, 충실사초와 김계구리사초는 난형, 타래사초는 넓은 피침형이고, 호밀사초는 수꽃 이삭의 미확인으로 비늘조각의 모양을 판찰하지 못하였다. 비늘조각 뒷부분의 모양은 통보리사초가 소철두형(apiculate), 나도벌사초와 산사초가 둔두형(obtuse), 충실사초가 예두형(acute), 타래사초가 점침두형(acuminate)으로 나타났다. 암꽃의 비늘조각 모양은 통보리사초, 나도벌사초, 김계구리사초, 충실사초와 타래사초는 난형, 산사초와 호밀사초는 넓은 피침형(broad lanceolate)으로 나타났다. 비늘조각 뒷부분의 모양은 통보리사초가 김계구리사초가 점침두형, 나도벌사초가 소철두형, 충실사초, 타래사초, 산사초와 호밀사초는 예두형이었다. 그리고 나도벌사초는 암수꽃 비늘조각 꼬리에 모두 빼은 털을 가진다(Fig. 1, Tables. 2-1, 2-2). 비늘조각의 긴이가 가장 긴 것은 통보리사초로 수꽃의 길이는 1.40-1.43-1.50cm이고, 암꽃의 길이는 1.10-1.34-1.52cm이다. 비늘조각의 길이가 가장 짧은 것은 암수꽃 모두 김계구리사초로 수꽃의 길이는 0.09-0.21-0.22cm이며 암꽃의 길이는 0.09-0.20-0.21cm이다. 나비는 암수꽃 모두

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-section of stem shape</td>
<td>winding, circular</td>
<td>winding</td>
<td>winding</td>
<td>winding, 2-furrowed triangular</td>
</tr>
<tr>
<td>Leaf shape</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pistillate spike shape</td>
<td>ovate</td>
<td>oblong</td>
<td>oblong</td>
<td>globose</td>
</tr>
<tr>
<td>Pistillate scale apex</td>
<td>acuminate</td>
<td>apiculate</td>
<td>acuminate</td>
<td>acute</td>
</tr>
<tr>
<td>Staminode spike shape</td>
<td>oblong</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Staminode scale apex</td>
<td>oblong</td>
<td>ovate</td>
<td>ovate</td>
<td>ovate</td>
</tr>
<tr>
<td>Perigynium beak shape</td>
<td>ovate</td>
<td>broad lanceolate</td>
<td>fusiform-ovate</td>
<td>ovate-lanceolate</td>
</tr>
<tr>
<td>Epidermal cell shape</td>
<td>planocconcave</td>
<td>bidentate</td>
<td>bidentate</td>
<td>bidentate</td>
</tr>
<tr>
<td>Epidermal cell of beak</td>
<td>slightly rectangular</td>
<td>non-uniform</td>
<td>rectangular</td>
<td>rectangular</td>
</tr>
<tr>
<td>Cell wall wavy</td>
<td>smooth</td>
<td>smooth</td>
<td>smooth</td>
<td>smooth</td>
</tr>
</tbody>
</table>

*: present, -: absent

놀보리사초가 가장 넓고(수폭: 0.30-0.38-0.45cm, 암폭: 0.40-0.50-0.60cm), 가장 좁은 것으로 수폭은 타래사초(0.06-0.13-0.17cm)이고, 암폭은 충실사초(0.06-0.09-0.11cm)로 나타났다 (Tables. 1-1, 1-2).

과낭(periognium): 놀보리사초와 타래사초는 난형, 나도벌사초는 넓은 피침형, 겹겨구리사초는 방주상 난형, 충실사초는 난상 피침형, 산사초는 타원형의 앞모양, 호밀사초는 장타원형으로 나타났으며, 놀보리사초, 충실사초, 타래사초와 호밀사초에는 백이 있다. 과낭의 부리가 짧은 것은 놀보리사초이며, 부리가 2개로 길게 뻗은 것은 나도벌사초, 겹겨구리사초, 충실사초와 타래사초이며, 이중 나도벌사초는 앞에 길게 뻗어있고, 겹겨구리사초, 충실사초와 타래사초는 길게 뻗어졌고, 충실사초와 타래사초의 가장자리에는 가시가 나 있다. 그리고 산사초는 부리가 짧고, 호밀사초는 부리 끝이 아주 부드럽다(Tables. 2-1, 2-2, Plates. 4, 5, 6). 과낭의 길이는 놀보리사초(1.05-1.16-1.30cm)가 가장 길고, 산사초(0.20-0.20-0.25cm)가 가장 짧게 나타났고, 네비에서는 놀보리사초(0.30-0.38-0.55cm)가 가장 넓고, 충실사초(0.08-0.09-0.10cm)가 가장 좁았다고(Tables. 1-1, 1-2).

수과(achene): 놀보리사초는 도란형, 나도벌사초는 넓은 도란형, 겹겨구리사초는 3면이 블록한 넓은 난형, 충실사초는 도란형, 타래사초와 산사초는 난형, 호밀사초는 장타원형으로 나타났다(Table. 4, Plates. 2, 3, 4). 수과의 길이는 놀보리사초(0.45-0.55-0.60cm)가 가장 길었고, 겹겨구리사초(0.12-0.13-0.15cm)가 가장 짧았으며, 네비는 놀보리사초(0.20-0.25-0.30cm)가 가장
Table 2-2. Qualitative characters for sect. Ovales and sect. Heleonastes of genus Carex in Korea.

<table>
<thead>
<tr>
<th>Characters</th>
<th>sect. Ovales</th>
<th>sect. Heleonastes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-section of stem shape</td>
<td>winding, very shallowly triangular</td>
<td>winding, very shallowly triangular</td>
</tr>
<tr>
<td>Leaf ligule</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pistillate spike shape</td>
<td>ovate</td>
<td>globose</td>
</tr>
<tr>
<td>Pistillate scale shape</td>
<td>ovate</td>
<td>broad lanceolate</td>
</tr>
<tr>
<td>Pistillate scale apex</td>
<td>acute</td>
<td>acute</td>
</tr>
<tr>
<td>Stamineate spike shape</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stamineate scale shape</td>
<td>broad lanceolate</td>
<td>oblong</td>
</tr>
<tr>
<td>Stamineate scale apex</td>
<td>acuminate</td>
<td>obtuse</td>
</tr>
<tr>
<td>Perigynium bead shape</td>
<td>ovate</td>
<td>oblong ovate</td>
</tr>
<tr>
<td>Epidermal cell</td>
<td>rectangular</td>
<td>lenticular</td>
</tr>
<tr>
<td>Epidermal cell of beak</td>
<td>linear</td>
<td>ovate</td>
</tr>
<tr>
<td>Cell wall wavy</td>
<td>smooth</td>
<td>smooth</td>
</tr>
<tr>
<td>Cell wall wavy of beak</td>
<td>slightly sinuous</td>
<td>smooth shallowly</td>
</tr>
</tbody>
</table>

+: present, -: absent

넓고, 축실사초 (0.07~0.08-0.09cm)가 가장 좋게 나타났다 (Table. 3).

2. 과낭 · 수과와 잎의 표피형

과낭 : 기본표피세포의 모양은 통보리사초가 짧은 4각형을, 나도별사초와 호밀사초는 모양이 일정치 않고, 검개구리사초, 총실사초와 태래사초가 4각형, 산사초는 잔즈모양을 나타냈다. 과낭 표면의 세포벽은 통보리사초, 나도별사초, 태래사초, 산사초와 호밀사초는 매끄러으며, 검개구리사초와 총실사초는 얕은 물결무늬로 나타났다. 과낭 부리의 표피세포모양은 통보리사초가 4각형이며, 나도별사초, 검개구리사초와 호밀사초는 불규칙하고, 총실사초, 태래사초는 산형, 산사초는 둥근으로 나타났다. 부리표피세포의 세포벽은 통보리사초, 나도별사초, 검개구리사초와 호밀사초는 매끄럽고, 총실사초와 태래사초는 얕은 물결무늬로, 산사초는 약간 굴곡 이지거나 굴곡이 없었다 (Tables. 2-1, 2-2, Plates. 6, 7).

수과 : 기본표피세포의 모양은 통보리사초, 나도별사초, 검개구리사초, 태래사초와 산사초는 5각형이거나 6각형, 총실사초는 6각형, 호밀사초는 불규칙한 원형 (non-uniform, circular)으로 나타났다. 호밀사초를 제외한 나머지 6분류군에서는 돌기가 반구형 (conical or convex body) 으로 나타났는데, 태래사초는 세포벽 측에 미세한 돌기가 염주모양으로 배열되었고 총실사초와 산사초는 원주형이었다. 세포벽의 모양에 있어서는 통보리사초, 검개구리사초와 총실사초는 얕은 물결무늬, 나도별사초는 굴곡이 없이 매끄러웠으며 태래사초, 산사초와 호밀사초는

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Silica body no./cell</th>
<th>Intercostal zone. cell row</th>
<th>Stomatal complex L.(µm)</th>
<th>W.(µm)</th>
<th>L/W</th>
<th>Frequence</th>
<th>L.(cm)</th>
<th>W.(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. kobomugi</td>
<td>1-2</td>
<td>4-9</td>
<td>2-5</td>
<td>44.2-51.1-57.2</td>
<td>26-31.2-36.4</td>
<td>1.2-1.6-1.8</td>
<td>8.11-14</td>
<td>0.45-0.55-0.60</td>
</tr>
<tr>
<td>C. gibbae</td>
<td>1-2</td>
<td>9-18</td>
<td>3.4</td>
<td>32.5-39.9-41.6</td>
<td>26-32-36.4</td>
<td>1.1-1.2-1.4</td>
<td>3.5-8</td>
<td>0.20-0.26-0.31</td>
</tr>
<tr>
<td>C. echinata</td>
<td>1-5</td>
<td>9-17</td>
<td>3-5</td>
<td>26-32.4-36.4</td>
<td>18.2-20.4-25.4</td>
<td>1.4-1.6-2</td>
<td>5.10-15</td>
<td>0.12-0.13-0.15</td>
</tr>
<tr>
<td>C. remotiuscula</td>
<td>-</td>
<td>13-35</td>
<td>2.35</td>
<td>33.8-37.1-40.3</td>
<td>20.8-25.8-33.8</td>
<td>1.15-1.9</td>
<td>3.5-6</td>
<td>0.15-0.16-0.18</td>
</tr>
<tr>
<td>C. maikii</td>
<td>1-3</td>
<td>15-24</td>
<td>6-9</td>
<td>37.7-39.1-41.6</td>
<td>23.4-25.3-35</td>
<td>1.4-1.6-1.7</td>
<td>5.8-11</td>
<td>0.15-0.16-0.20</td>
</tr>
<tr>
<td>C. curta</td>
<td>2-6</td>
<td>10-24</td>
<td>2.356</td>
<td>26-31.2-33.8</td>
<td>18.2-20.1-33.8</td>
<td>0.9-1.1-1.4</td>
<td>3.5-8</td>
<td>0.12-0.15-0.18</td>
</tr>
<tr>
<td>C. loliacea</td>
<td>4-9</td>
<td>22</td>
<td>2-4</td>
<td>31.2-33.8-36.4</td>
<td>26-27.6-31.2</td>
<td>1.12-1.4</td>
<td>2-3.5</td>
<td>0.17-0.18-0.19</td>
</tr>
</tbody>
</table>

값은 물결무늬로 나타났다 (Table 4, Plates. 6, 7).

235

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. kobomugi</td>
<td>C. gibbae</td>
<td>C. echinata</td>
<td>C. remotiuscula</td>
<td>C. muakii</td>
<td>C. curta</td>
</tr>
<tr>
<td>Leaf epidermis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stomata</td>
<td>ad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ab</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Papillae</td>
<td>ad</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Prickle</td>
<td>ad</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shape of long cell</td>
<td>square</td>
<td>square</td>
<td>rectangular</td>
<td>rectangular</td>
<td>square</td>
<td>rectangular</td>
</tr>
<tr>
<td>cell shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell wall wavy</td>
<td>slightly wavy</td>
<td>sinuously wavy</td>
<td>sinuously wavy</td>
<td>deeply wavy</td>
<td>deeply wavy</td>
<td>deeply wavy</td>
</tr>
<tr>
<td>Subsidiar cell shape</td>
<td>high-dome</td>
<td>high-dome</td>
<td>low-dome</td>
<td>low-dome</td>
<td>high-dome</td>
<td>dome to triangular</td>
</tr>
<tr>
<td>Achene shape</td>
<td>obovate</td>
<td>widely obvate</td>
<td>ovate</td>
<td>obovate</td>
<td>ovate</td>
<td>ovate</td>
</tr>
<tr>
<td>Epidermal cell</td>
<td>pentagonal,</td>
<td>pentagonal,</td>
<td>pentagonal,</td>
<td>pentagonal,</td>
<td>pentagonal,</td>
<td>pentagonal,</td>
</tr>
<tr>
<td>hexagonal</td>
<td>hexagonal</td>
<td>hexagonal</td>
<td>hexagonal</td>
<td>hexagonal</td>
<td>hexagonal</td>
<td>hexagonal</td>
</tr>
<tr>
<td>Cell wall wavy</td>
<td>slightly sinuous</td>
<td>smooth</td>
<td>slightly sinuous</td>
<td>slightly sinuous</td>
<td>slightly sinuous</td>
<td>deeply sinuous</td>
</tr>
</tbody>
</table>

+: present, -: absent
리사초 (44.2-51.1-57.2μm)로 가장 길고, 산사초 (20.31.2-33.8μm) 가 가장 짧으며, 너비는 나도벌사초 (26.32-36.4μm) 가 가장 넓고, 겹개구리사초 (18.2-20.4-26μm) 가 가장 좁게 나타났다. 기공복합체의 부세포는 모두 부풀었는데, 그 모양이 통보리사초, 나도벌사초, 타래사초와 호밀사초는 높은 아치형으로, 겹개구리사초와 충실사초는 낮은 아치형으로, 산사초는 삼각상 아치형으로 나타났다 (Tables. 3, 4, Plates. 8).

고찰

통보리사초는 Lee and Oh (1971)에 의해 구조체 모양이 A₁ 형으로 밝혀졌으나, 본 연구 결과로는 A₁-A₂형으로 나타나 차이가 있었다.

나도벌사초의 나도벌사초, 충실사초의 충실사초, 타래사초의 타래사초와 산사초의 산사초는 허 (1999)에 의해서 화서의 모양, 화서내 꽃미식의 간격, 화서내 꽃미식의 개수에 따라 2개의 그룹으로 나누어진 바 있다. 허 (1999)는 산사초와 나도벌사초가 유사성이 있다고 보았는데, 본 연구결과 외형적인 면에서는 약간의 유사성이 있었으나 산사초는 암꽃미리가 2개이며 과당은 뚱뚱한 부리가 있고 잎의 앞·뒷면 모두에서 유두돌기가 나타났으며 나도벌사초는 암꽃미리가 3개이며 과당은 부리부분이 2개로 갈라지고 잎의 앞면에만 유두돌기가 나타나며 포가 발달한 점 등 뚱뚱한 차이가 있는 것을 발견할 수 있었다.

Dan and Hoshino (1994)는 추구자련형의 이용을 위한 일본산 사초과 사초속 식물 43분류군의 수과 표면 미세구조를 연구한 바 있는데, 이 중 본 연구에서 다른 나도벌사초, 타래사초와 산사초의 결과를 보면, 나도벌사초는 수과의 외형은 둥근 개란형, 세포벽은 발달되지 않은 적선 모양이며, 세포표면 중앙에 원주형 돌기가 발달하였고, 과당은 네모 개란형이며 날개가 발달한 결과, 타래사초의 수과는 개란형으로 세포벽은 적선모양이고, 세포벽 쪽에 가깝다고 유지한 돌기가 염주모양으로 배열되었으며 세포 중앙에 돌기 원주부분에 평판한 산모양 돌기가 보이며 과당은 개란형이고 미세한 날개가 있는 절, 또한 산사초의 수과는 개란형으로 세포 안에 원주형 돌기가 보이며, 과당은 개란형으로 본 연구 결과와 일치하였다.

호밀사초는 6월말 (2001) 장벽산에서 채집한 재료를 관찰하였는데 수꽃이삭이 일찍 탈락된 시기에서 수꽃을 정밀히 관찰할 수 없었고 겹개구리사초도 수꽃이삭을 관찰할 수 없었으므로 좀 더 확실한 결론을 얻기 위해서는 많은 개체의 조사연구가 필요하다고 본다. 또한 산사초
절에 속하는 산타래사초(C. bipartita), 별사초(C. tenuiflora)와 큰산사초(C. mackenziei)는 확
중분포를 둔한 수가 없어 본 연구에서 제외되었으므로 앞으로 다각도의 연구를 통해 재정리
되어야 할 것으로 생각되며, 다른 나아가 팽이사초아속의 나머지 분류군들도 다각도의 연구들
통해 비교 분석하여야 만이 결과 종의 유연관계를 확실히 밝히고 정확한 분류체계를 세울 수
있다고 생각된다.

관찰된 분류군 대부분은 전국적으로 널리 분포한다. 동보리사초는 충남, 경남 경기도, 전
남 등의 로레 해변과, 나노밀사초는 전북, 충남, 충북 등의 길가에, 검개구리사초는 충·북
부 지역 등의 산지와 수림지역에, 타래사초는 전국적으로 강변에, 산사초는 전국적으로 습기
있는 들관에, 호밀사초(본 연구에 사용된 표본은 중국 길림성 장백산에서 채집)는 함북, 함남
등의 화산지대에 분포한다.

3. 한국산 팽이사초아속 7종의 검색표
A. 이식은 단성화, 자웅이주로 암술머리는 3개로 갈라지며 과낭의 표피에 백이 있다.-- C. kobomugi (통보리사초)
A. 이식은 양성화, 자웅동주로 암꽃이 윗부분에 빛고 수꽃이 아래 부분에 떨다. 암술머리는
2~3개로 갈라지며, 과낭의 표피에 백이 있거나 없다.
B. 암술머리는 3개로 갈라지며, 과낭의 가장자리에 날개와 포가 발달하였다.-- C. gibba (나노밀사초)
B. 암술머리는 2개로 갈라지며, 과낭의 가장자리에 날개와 포가 있거나 없다.
C. 긴 부리를 가지며 끝이 갈라져 있다.
D. 과낭은 가장자리 날개와 백이 없고, 포가 없으며, 늪지에서 자란다.-- C. echinata (검개구리사초)
D. 과낭은 가장자리에 날개와 백이 있고, 포가 있거나 없으며, 습한 초원이나 숲에서
자란다.
E. 이식은 성기계 달리고, 포가 길게 나있다.-- C. remotiuscula (충실사초)
E. 이식은 밀집되어 달리고, 포가 없다.-- C. maakii (타래사초)
C. 둑뚝한 부리를 갖거나 부리는 없고 허 الجمه한다.
F. 암꽃의 비늘 조각은 밝은 황색이며, 백이 없다.-- C. curta (산사초)
F. 암꽃의 비늘 조각은 연한색이며, 두꺼운 백이 있다.-- C. loliacea (호밀사초)
사 사

이 논문은 2002년도 후기 성신여자대학교 학술평가조성비 지원에 의하여 연구되었음.

인용문헌

장정아 · 이창숙, 2002 식물명정리집(양자류 · 단자엽류: 사초과, 꽃정초과, 골풀과, 마과)
성신여대출판부, 서울.

------ · 이현진. 2001b. 한국산 사초속 왕비늘사초절의 분류학적 연구. 식물분류학회지. 31: 183-222.

Appendix. The list of the Korean *Carex* for observing the epidermis of perigynium, achene and leaf

section *Macrocephalae* Kük. (동보리사초절 : 국명신청)

1. *C. kobomugi* Ohwi

Jeonbuk-do: Sinjido(July 6, 1982, Y. C. Oh, s. n. SWH), Wooido(July 21, 1979, T. B. Lee & J. T. Park & M. Y. Jo SNUA-no, C4003), Dochando(July 22, 1979, T. B. Lee SNUA-no C4003).

section *Gibbae* Kük. (나도별사초절 : 국명신청)

2. *C. gibba* Wahlbn.

section *Stellulatae* Kunth (점개구리사초절 : 국명신청)

section *Elongatae* Kunth (충성사초절 : 국명신청)

Jeju-do: Yongsuri(October 9, 1973, Y. C. Oh s. n. SWH)
section *Ovales* Kunth (타래사초절 : 국명신청)

5. *C. maakii* Maxim

Seoul: Dobongsan(August 4, 1982, K. M. Park. s. n. SWH)

section *Heleonastes* Kunth (산사초절 : 국명신청)

Gyeonggi-do: Gwangneung(May 9, 1981, Y. C. Oh & Y. N. Lee, s. n. SWH), Dongguneung(May 3, 1979, Y. C. Oh. s. n. SWH)

Gangwon-do: Sangwonsa(May 17, 1964, T. B. Lee SNUA-no C.3956), Seolaksan(June 3, 1966, T. B. Lee & M. Y. Cho, SNUA-no C.3956), Gyeongpodae(May 18, ?, T. B. Lee SNUA-no C.3956)

China, Gimmelseong: Jangbaeksan(June 16, 2001, C. S. Lee & Y. C. Oh s. n. SWH)

7. *C. loliacea* Linné

China, Gimmelseong: Jangbaeksan(May 14, 2001, C, S, Lee & Y, C, Oh s. n. SWH)
Explanation of Plates

Plates 1-2. SEM photographs of leaf surface (a: Leaf adaxial, b: Leaf abaxial) bar : μm

1 : *C. kobomugi*, 2 : *C. gibba*, 3 : *C. echinata*, 4 : *C. remotiuscula*,
5 : *C. maakii*, 6 : *C. curta*, 7 : *C. loliiacea*

Plates 2-4. SEM photographs of achene shape (c) and epidermis (d) bar : μm

1 : *C. kobomugi*, 2 : *C. gibba*, 3 : *C. echinata*, 4 : *C. remotiuscula*,
5 : *C. maakii*, 6 : *C. curta*, 7 : *C. loliiacea*

Plates 4-6. SEM photographs of shape of perigynium (e) and perigynium beak (f) bar : μm

1 : *C. kobomugi*, 2 : *C. gibba*, 3 : *C. echinata*, 4 : *C. remotiuscula*,
5 : *C. maakii*, 6 : *C. curta*, 7 : *C. loliiacea*

Plates 6-7. SEM photographs of epidermis of perigynium (g) and perigynium beak (h) bar : μm

1 : *C. kobomugi*, 2 : *C. gibba*, 3 : *C. echinata*, 4 : *C. remotiuscula*,
5 : *C. maakii*, 6 : *C. curta*, 7 : *C. loliiacea*

Plates 8. LM photographs of leaf surface (Even number leaf abaxial, Odd number leaf adaxial) X60

1-2 : *C. kobomugi*, 3-4 : *C. gibba*, 5-6 : *C. echinata*,
7-8 : *C. remotiuscula*, 9-10 : *C. maakii*, 11-12 : *C. curta*, 13-14 : *C. loliiacea*

Plates 9. Photographs of shape of perigynium and achene (Even number; perigynium, Odd number; achene)

1-2 : *C. kobomugi* (X10), 3-4 : *C. gibba* (X20), 5-6 : *C. echinata* (X40),
7-8 : *C. remotiuscula* (X40), 9-10 : *C. maakii* (X25), 11-12 : *C. curta* (X40)
13-14 : *C. loliiacea* (X25)
Plate 2
Plate 4
Plate 5
Plate 6
Plate 7
Plate 8
Plate 9
A taxonomic study on six section subgenus *Vigena* Nees of *Carex* L. (Cyperaceae) in Korea

Oh, Yong Cha* · Mi Jung Jo
(Department of Biology, Sungshin Women’s University, 136–742)

Morphological characters of *C. kobomugi*, *C. gibba*, *C. echinata*, *C. remotiuscula*, *C. maakii*, *C. curta*, and *C. loliacea* of genus *Carex* were reexamined. The epidermal patterns of perigynium, achene and leaf were investigated using by a scanning electron microscope(SEM) and a light microscope(LM). Morphological characters, such as length and width of stem and leaf, sheath, bract, spike, scale, perigynium, beak of perigynium, length of spike peduncle, size, and frequency of stomatal complex of leaf, number of bract, shape of stem transection, scale and apex of scale, beak and base of perigynium, achene, epidermal cell and cell wall of perigynium, achene, leaf epidermal patterns (fundamental epidermal cell and cell wall, silica body, subsidiary cell), hair, papillae, prickle present/absent of perigynium and leaf were useful for the identification of observed seven taxa. Examined six taxa of section *Macrocephalae*, *Gibbae*, *Stellulatae*, *Elongatae*, *Ovaies*, and *Heleonastes* were distinct from each other with respect of length and width stem, leaf, bract, perigynium, perigynium beak, length of spike peduncle, perigynium, and leaf. A key based on data was presented here.

Key words: *Macrocephalae*, *Gibbae*, *Stellulatae*, *Elongatae*, *Ovaies*, *Heleonastes*.

*Corresponding author : Phone, Fax: +82-2-920-7170, E-mail ycoh@cc.sungshin.ac.kr