Krigia속의 과피의 해부학적 구조와 분류학적 의미

이복원 박지극 박재홍
(경북대학교 자연과학대학 생물학과)

주요어 : 과피 해부학, libriform 섬유세포, fiber-scleoid, Krigia, 국화과

Krigia속(Asteraceae Lactuceae)은 모두 7종으로 구성되며 일년생 또는 다년생 초본이다. 북미 중부와 동서부 그리고 인접한 캐나다에 분포하며, 길가, 뿔터, 잔디밭 등 여러 곳에서 서식한다. 개화 시기는 봄 혹은 초여름에 오렌지색 혹은 황색 두상화가 달린다. 방추형의 총포를 가지며 1~2층을 이룬다. 꽃모는 길고 매키거나 아니면, 적고 짧거나 않기도 한다. 따라서 이들 종간에는 총포의 수와 교재로 쉽게 구분된다(Shinner, 1947; Simpson, 1973). 하지만 서식지의 환경, 꽃모의 형태, 열색체 수에 따라 다양한 변이를 가지므로 Krigia에 대한 속과 종의 관계는 오랫동안 논쟁거리가 되었다.

*교신저자: 전화 (053) 950-5352, 전송 (053) 953-3066, 전자우편 jhpak@knu.ac.kr
(접수 2004년 10월 21일, 채용 2004년 12월 7일)

Pak et al(2001)에 의해 Krigia속과 근연인 Microseris 14분류군, Uropappus 1분류군, Stebbinsoseris 2분류군에 대한 과파의 해부학적 연구를 수행하였다. 이 연구에서 과파의 해부학적 형질이 종간의 관계와 속을 분류하는데 중요하고 유용하다는 것을 제시했다. 따라서 Krigia속의 모든 종과 근간 속에 대한 과파의 해부학적 연구를 통한 분류 체계의 제정토가
필요하다.

본 연구의 목적은 첫째 Krigia속내 7종 모두와 Northocalais cuspidata 1종에 대한 꽃의 해부학적 구조를 밝히고, 둘째는 이 결과에 기초하여 Krigia속내의 분류 체계를 재검토하고자 한다.

재료 및 방법

Krigia속에 속하는 7종(K. biflora, K. dandelion, K. montana, K. virginica, K. cespitosa, K. occidentalis, K. wrightii) 모두와 근연 속에 속하는 Northocalais cuspidata 1종의 꽃 해부학적 형질을 조사하였다. 실험에 사용된 종자는 The University of California, Berkeley(UC)가 소장하고 있는 식물 표본으로부터 얻었다. 여러 표본 가운데 체질지 3곳 이상을 고르고 각 점당 성숙된 꽃술 5개 이상을 선별하여 실험에 사용하였다(Table 1).

성숙된 종자를 2% 알모니아수에 2시간 이상 연화시키고 종류수로 여러번 깨끗이 씻은 후 종자의 양 껍질을 절라다. 꽃ул 첨두가 원활하도록 내부 공기를 없애기 위해 5분 이상 진공펌프로 전류 공기를 배출 시켰다. 이들 종자를 FAA(formalin : glacial acetic acid : 50% alcohol = 1 : 1 : 18)에 고정하고 tertiary-butyl series로 탈수시키였다. Microtoming을 위해 끓는점이 56~58℃인 파라핀에 7일 이상 배포시켜 파라핀 케익을 만들었다. 10~15μm 두께로 칼라 safranin-fast green combinations으로 염색하였고, Entellan으로 슬라이드글라스에 고정하였다.

계통분석은 heuristic search를 이용하여 수행하였으며 TBR branch swapping, addition sequence simple, collapse of zero-length branches, MULPARS와 ACCTRAN optimization의 option을 사용하였다. 계통수는 Northocalais cuspidata를 외군으로 선정하여 rooting하였다.
결과 및 고찰

*Krigia*속 모든 종의 성숙한 과실 형편면 모양은 외관을 제외하고 공통적으로 무리한 눈을 가진 환상형(CDR: circular with distinctive rib)의 형태를 가지고 있으며, 눈의 수는 모든 종이 15개로 관찰되었다. 외관에 속하는 *N. cuspidata*는 눈의 수가 10개였다 (Fig. 1, Table 2). 또한 *costa*의 형태도 *Northocalais cuspidata*는 외각이 평평한 모양으로 약하게 돌출된 눈(WPL: weakly protrudent with plane margin)의 형태로 둔한 모양을 이루나, *Krigia* 속은 예리한 외형을 이루고 있어 *Northocalais*속과 구별된다. 특히 *intercosta*내에 fiber-sclereid 세포가 전혀 발달하지 않은 점은 *Krigia*속의 모든 종들과는 차이점을 보여 *Krigia*속과 *Northocalais*속 간에는 과피 해부학적 특징으로 분명히 구분된다 (Table 2).

Krigia 속에 속하는 종들의 과피 해부학적 형태의 공유 형편은 가장 안쪽에 배가 위치하고, 그 위에 나선상으로 비형된 1층의 세포층으로 구성된 종피로 이루어져 있었다. 그리고, 이와 된 내피와 한 층의 단단 세포로 구성된 외피로 구성되며, 외피 아래쪽에 발달한 fiber-sclereid 세포층과 내피와 가까이에 발달한 libriform 섬유 세포층으로 종피를 이루었다 (Fig. 1). 종피에서 보이는 조직학적 차이점은 근근으로 하여 *Krigia* 속 식물의 과피의 해부학적 구조는 두 개의 Type (Type I, Type II)로 나눌 수 있다. 즉, Type I은 *costa*와 *intercosta*내에서 fiber-sclereid 세포층과 libriform 섬유 세포층이 함께 발달되어 있으며, 특히 libriform 섬유 세포층이 2~5층으로 아주 잘 발달한 유형이다.

그리고 Type II는 *costa*와 *intercosta*내에서 fiber-sclereid 세포층이 발달되어 있는 반면에 libriform 섬유 세포층이 거의 발달하지 않은 유형으로 나누어진다 (Table 2).

Table 1. *Krigia* and relative species used in this study

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Voucher specimens</th>
<th>Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sect. Krigia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. dandelion</td>
<td>D.S. Corell 37088</td>
<td>Texas</td>
</tr>
<tr>
<td></td>
<td>Lloyd H. Shinners</td>
<td>Texas</td>
</tr>
<tr>
<td></td>
<td>A. H. Curtiss 1739</td>
<td>Florida</td>
</tr>
<tr>
<td>K. montana</td>
<td>Radford 1680</td>
<td>North Carolina</td>
</tr>
<tr>
<td></td>
<td>A. H. Curtiss 6395</td>
<td>Florida</td>
</tr>
<tr>
<td></td>
<td>Stewart 1681</td>
<td>North Carolina</td>
</tr>
<tr>
<td>K. biflora</td>
<td>R. Randolph 84</td>
<td>Eastern Pennsylvania</td>
</tr>
<tr>
<td></td>
<td>G. M. Merril 331</td>
<td>Arkan Sas</td>
</tr>
<tr>
<td></td>
<td>A. E. Radford 44635</td>
<td>North Carolina</td>
</tr>
<tr>
<td>K. virginica</td>
<td>R. K. Godfrey et al 7042</td>
<td>North Carolina</td>
</tr>
<tr>
<td></td>
<td>Hugh H. Ilitis at 28419</td>
<td>Wisconsin</td>
</tr>
<tr>
<td></td>
<td>Lloyd H. Shinners 7629</td>
<td>Texas</td>
</tr>
<tr>
<td>Sect. Cymbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. occidentalis</td>
<td>Charles Wright 418</td>
<td>Western Texas</td>
</tr>
<tr>
<td></td>
<td>Frank W. Gould 5508</td>
<td>Texas</td>
</tr>
<tr>
<td></td>
<td>Lloyd H. Shinners 7094</td>
<td>Texas</td>
</tr>
<tr>
<td>K. wrightii</td>
<td>Ki-Joong, Kim</td>
<td>Texas</td>
</tr>
<tr>
<td>K. cespitosa</td>
<td>Robert Lonard 2078</td>
<td>Texas</td>
</tr>
<tr>
<td></td>
<td>Delvie Demaree 22960</td>
<td>Arkansas</td>
</tr>
<tr>
<td></td>
<td>A. H. Curtiss 6395</td>
<td>Florida</td>
</tr>
<tr>
<td>Northocalais caspidata</td>
<td>Q. A. Stevens 1478</td>
<td>North Dakota</td>
</tr>
<tr>
<td></td>
<td>UC 49994</td>
<td>Colorado</td>
</tr>
<tr>
<td></td>
<td>UCM 017996</td>
<td>Western North Dakota</td>
</tr>
</tbody>
</table>

분자분석을 위해 각 형질들을 coding 한 후, data matrix를 작성하였다(Table 3). 외균을 포함한 8개 분류군에 대한 7개 형질의 data matrix의 분석결과 12 단계의 tree length를 갖는 22개의 최대 절약 계통수를 얻었다. 일치계수(Consistency index: CI)는 0.9167, 보유계수 (Retention index: RI)는 0.9000로 나타났다. 전체 7개 형질중 5개의 형질(Character 3, 4, 5, 6, 7)이 계통학적으로 유효하였고 2개의 형질 (Character 1, 2)는 계통학적으로 유효하지 않았다. Parsimony analysis를 통해 얻은 22개 중 1개의 tree를 Fig. 19에 제시하였다.
Table 2. Character and character states used in the cladistic analysis of *Krigia* and outgroup

<table>
<thead>
<tr>
<th>NO.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shape of fruit: CDR(1), CNR(0)</td>
</tr>
<tr>
<td>2.</td>
<td>Number of rib: 10 (0), 15(1)</td>
</tr>
<tr>
<td>3.</td>
<td>Shape of costa: WPL(0), WPA(1), PRO(2), WPO(3)</td>
</tr>
<tr>
<td>4.</td>
<td>Number of fiber-sclereid cell layer in costa: 0(0), 1-3(1), 4<2(2)</td>
</tr>
<tr>
<td>5.</td>
<td>Number of libriform fiber cell layers in costa: 2-5(0), 0(1)</td>
</tr>
<tr>
<td>6.</td>
<td>Number of fiber sclereid cell layers in intercosta: 0(0), 1(1), 2-3(2)</td>
</tr>
<tr>
<td>7.</td>
<td>Number of libriform fiber cell layer in intercosta: 2-3(0), 0(1)</td>
</tr>
</tbody>
</table>

Table 3. Data matrix of *Krigia* and outgroup species.

<table>
<thead>
<tr>
<th>Species</th>
<th>Characters</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7′</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sect. Krigia</td>
<td>K. biflora</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>K. dandelion</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>K. montana</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>K. virginica</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sect. Cymbia</td>
<td>K. cespitosa</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>K. occidentalis</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>K. wrightii</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Nothocalais</td>
<td>N. cuspidata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*The seven characters are listed in Table 2.
Table 4. Comparison in the fruit wall anatomy of the genus *Krigia* and *Nothocalais cuspidata*

<table>
<thead>
<tr>
<th>Species</th>
<th>Shape of fruit</th>
<th>No. rib</th>
<th>Shape of costa</th>
<th>Diameter of fruit (μm)</th>
<th>Thickness of costa (μm)</th>
<th>No. of fiber sclereid-cell layers (costa)</th>
<th>No. of libriform fiber cell layers (costa)</th>
<th>No. of fiber sclereid-cell layers (intercosta)</th>
<th>No. of libriform fiber cell layers (intercosta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. biflora</td>
<td>CDR</td>
<td>15</td>
<td>WPO</td>
<td>550~600</td>
<td>42~72</td>
<td>1~2</td>
<td>3~4</td>
<td>1</td>
<td>2~3</td>
</tr>
<tr>
<td>Type II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. dandelion</td>
<td>CDR</td>
<td>15</td>
<td>PRO</td>
<td>500~770</td>
<td>65~105</td>
<td>> 4</td>
<td>0</td>
<td>2~3</td>
<td>0</td>
</tr>
<tr>
<td>K. montana</td>
<td>CDR</td>
<td>15</td>
<td>PRO</td>
<td>670~820</td>
<td>50~87</td>
<td>> 4</td>
<td>0</td>
<td>2~3</td>
<td>0</td>
</tr>
<tr>
<td>K. virginica</td>
<td>CDR</td>
<td>15</td>
<td>PRO</td>
<td>450~550</td>
<td>40~70</td>
<td>> 4</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Type I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. cespitosa</td>
<td>CDR</td>
<td>15</td>
<td>WPA</td>
<td>540~550</td>
<td>42~75</td>
<td>1</td>
<td>3~5</td>
<td>1</td>
<td>2~3</td>
</tr>
<tr>
<td>K. occidentalis</td>
<td>CDR</td>
<td>15</td>
<td>WPA</td>
<td>450~550</td>
<td>52~87</td>
<td>1~3</td>
<td>2~5</td>
<td>2~3</td>
<td>2~3</td>
</tr>
<tr>
<td>K. wrightii</td>
<td>CDR</td>
<td>15</td>
<td>WPA</td>
<td>600~660</td>
<td>77~125</td>
<td>1~3</td>
<td>2~5</td>
<td>2~3</td>
<td>2~3</td>
</tr>
<tr>
<td>Outgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. cuspidata</td>
<td>CNR</td>
<td>10</td>
<td>WPL</td>
<td>830~1,080</td>
<td>80~100</td>
<td>0</td>
<td>3~5</td>
<td>0</td>
<td>2~3</td>
</tr>
</tbody>
</table>

Fig. 1. Transverse section of fruit of *K. cespitosa* and *N. cuspidata*. (exc: exocarp, mec: mesocarp, enc: endocarp, em: embryo, cos: costa, inc: intercosta, rib numbers). Scales equal to 100 μm.

Fig 2. *K. dandelion* showing undeveloped and *K. biflora* showing well developed libriform fiber cell. sl: fiber-sclereid cells, lb: libriform fiber cells, sc: seed coat. Scales equal to 10 μm.
Figs. 3–10. Transverse section of fruit of *Krigia*. *K. biflora* (3, 4); *K. dandelion* (5, 6); *K. montana* (7, 8); *K. virginica* (9, 10). 3, 5, 7, 9 scales equal to 100 μm. 4, 6, 8, 10 scales equal to 5 μm.

Figs. 11–18. Transverse section of fruit of *Krigia* and *Northocalais*. *K. cespitosa* (11, 12); *K. occidentalis* (13, 14); *K. wrightii* (15, 16); *N. cuspidata* (17, 18). 11, 13, 15, 17 scales equal to 100 μm. 12, 14, 16, 18 scales equal to 5 μm.
Fig. 19. The most parsimonious cladogram found from the data matrix in Table 3. The characters are listed in Table 2. Solid bars indicate non-homoplastic synapomorphies, open bars homoplastic synapomorphies with reversals, and crosses reversals.

외군인 Nothocalais cuspidata와 비교할 때 Krigia속의 모든 종은 공유된 형태(character 1), 늑의 수(character 2)가 공유된 형질이고, intercosta내에서 fiber-sclereid 세포 쟁의 수(character 6)의 동형 형질에 의해 하나의 clade를 형성함으로써 외군과 구분되었다. Krigia속 내에서는 costa의 형태(character 3)에서 3개의 clade로 구분되었으며, costa 내 fiber-sclereid 세포층의 수(character 4)에 의해 크게 2개의 clade로 구분되었다. 첫 번째 clade는 Cymbia属로 구분되었던 K. cespitosa, K. occidentalis, K. wrightii와 이전에는 Krigia属에 속해 있던 K. biflora가 하나의 clade를 형성하고 있다. 이 clade 내에서는 다시 2개의 유형으로 나누어 지는데, 첫 번째는 K. biflora와 K. cespitosa이고, 두 번째는 K. occidentalis와 K. wrightii이다. 두 번째 clade는 costa에서 libriform 심유세포층의 수
(Character 5)와 intercosta에 libiform 성유세포의 수(Character 7)를 공유형질을 가지는 *Krigia*절에 속해 있던 *K. virginica*, *K. dandelion*, *K. montana*가 하나의 clade를 형성하였다. 특히 *K. dandelion*과 *K. montana*는 intercosta에 fiber-sclereid 세포층의 수가 2~3층으로 같아 하나의 유형을 형성하였다.

감 사의 글

본 연구계료를 혼명히 사용을 허락해 준 UC표본관의 관장 및 John L. Strother 박사님께 감사의 드립니다. 그리고 *Krigia wrightii*의 재료를 제공해 주신 고려대학교 김기종 박사님께도 감사의 표현합니다. 본 연구는 환경부 차세대혁신기술개발사업의 연구비 지원(과제번호 052-041-026)으로 수행되었습니다.

인 용 문헌

Kim, K. J. and T. J. Mabry. 1991. Phylogenetic and evolutionary implications of nuclear

Fruit wall anatomy of the genus *Krigia* (Asteraceae, Lactuceae) and their taxonomic implications

Bok Won Lee, Ji Kuk Park, Jae-Hong Pak*

(Department of Biology, Graduate School, Kyungpook National University, Daegu 702–701, Korea)

We researched fruit wall anatomical characters about the seven taxa of *Krigia* and the nearest one relative, *Nothocalais cuspidata* by making use of the fruit wall anatomy, and inferred systematical similarity. Among these characters, all species of the genus *Krigia* has identical characters in the shape of fruit and the number of rib, but showed specific differences in the shape of costa, the numbers of libriform fiber cell layers and fiber–sclereid cell layers in mesocarp, and development degree in these characters. *Krigia biflora*, *K. cespitosa*, *K. occidentalis* and *K. wrightii* have well developed libriform fiber cell, but *K. dandelion*, *K. montana* and *K. virginica* have undeveloped libriform fiber cell, and mostly consist of fiber–sclereid cell layers. According to the fruit wall anatomical characters, *K. biflora* which belonged to sect. *Krigia* in the previous classification system is more similar to sect. *Cymbia* than sect. *Krigia*.

Key words: Fruit wall anatomy, libriform fiber cell, fiber–sclereid, *Krigia*, Asteraceae

*Corresponding author: Phone +82–53–950–5352, Fax +82–53–953–3066, e-mail jhpak@knu.ac.kr