큰참나물(Cymopterus melanotilingia, 산형과)의 분류학적 재검토

구자춘・김무열
전북대학교 자연과학대학 생물과학부 & 생물자원성별연구소, 전북대학교 과학교육학부

큰참나물(Cymopterus melanotilingia (H. Boissieau) C.Y. Yoon)의 분류학적 위치에 대해 ITS 염기서열에 의해 재검토하였다. 큰참나물은 삼겹잎을 가지 대마참나물이나 참나물과 외부형태적으로 유사하나, 과실의 분과가 비대칭이고 3 내지 4개의 납개형 녹선을 가지고 있어 이들 속들과 무리가 구별되었다. 또한 큰참나물은 분과가 대칭이고 5개의 녹선을 가진 벚나무나리속(Ostericum)이나 약간이 변형되고 파세가 다른이 밤이와나물속(Angeleica)과 구별되었다. ITS 염기 서열은 큰참나물이 북미의 원산지인 Cymopterus속과 완전히 다른 분계조를 형성하여, Cymopterus속과 다른 Halosciastrum속에 포함시키려 한 것을 지지해 주었다. 따라서 큰참나물은 Halosciastrum melanotilingia (H. Boissieau) Pimenov & Tikhomirow가 합법적인 학명임을 지지해 주었다.

주요어: 큰참나물, 산형과, ITS

큰참나물(Cymopterus melanotilingia (H. Boissieau) C.Y. Yoon)은 산형과에 속하며, 한국 전역과 리시아의 우수리 지역에만 분포하는 동북아시아 특산종이다(Yoon, 2001).
큰참나물은 삼겹잎을 가지 대마참나물(Tilia tsusimensis (Zab) Kitagawa)이나 참나물속(Pimpinella)과 외부형태적으로 유사하나, 과실의 분과가 비대칭이고 3 내지 4개의 납개형 녹선을 가지고 있어 이들 속과 무리가 구별되었다(Kim et al., 2007).

*교신저자: 김무열 (063) 270-2788, 전자우편 mykim@chonbuk.ac.kr

345
Table 1. *Cymopterus melanotilinioa* with related taxa and outgroup included in the phylogenetic analyses. Most ITS sequences were obtained from GenBank.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Abbreviation</th>
<th>Voucher</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelica acutiloba</td>
<td>AngAcu</td>
<td></td>
<td>AY548827</td>
</tr>
<tr>
<td>A. gigas</td>
<td>AngGiga</td>
<td>DQ205375</td>
<td></td>
</tr>
<tr>
<td>Onidium montaneri</td>
<td>CniMont</td>
<td>AY320381, AY320367</td>
<td></td>
</tr>
<tr>
<td>Cryptotaenia japonica</td>
<td>CryJap</td>
<td>AY302736</td>
<td></td>
</tr>
<tr>
<td>Cymopterus aboriginum</td>
<td>CymAbor</td>
<td>AY146896, AY146892</td>
<td></td>
</tr>
<tr>
<td>C. acaulis</td>
<td>CymAcau</td>
<td>AF358474, AF358441</td>
<td></td>
</tr>
<tr>
<td>C. basilicatus</td>
<td>CymBasa</td>
<td>AF358476, AF358432</td>
<td></td>
</tr>
<tr>
<td>C. beckii</td>
<td>CymBekc</td>
<td>AY146830, AY146896</td>
<td></td>
</tr>
<tr>
<td>C. bulbosus</td>
<td>CymBulb</td>
<td>AF358477, AF358444</td>
<td></td>
</tr>
<tr>
<td>C. cinerarius</td>
<td>CymCine</td>
<td>AY146831, AY146897</td>
<td></td>
</tr>
<tr>
<td>C. constandri</td>
<td>CymCons</td>
<td>AY146832, AY146898</td>
<td></td>
</tr>
<tr>
<td>C. cornutus</td>
<td>CymCorr</td>
<td>AY146834, AY146900</td>
<td></td>
</tr>
<tr>
<td>C. couleri</td>
<td>CymCoul</td>
<td>AY146835, AY146801</td>
<td></td>
</tr>
<tr>
<td>C. davisii</td>
<td>CymDavi</td>
<td>AY146836, AY146802</td>
<td></td>
</tr>
<tr>
<td>C. deserticola</td>
<td>CymDes</td>
<td>AY146837, AY146803</td>
<td></td>
</tr>
<tr>
<td>C. douglassii</td>
<td>CymDoug</td>
<td>AY146838, AY146804</td>
<td></td>
</tr>
<tr>
<td>C. duchesnensis</td>
<td>CymDuch</td>
<td>AF358478, AF358445</td>
<td></td>
</tr>
<tr>
<td>C. evertii</td>
<td>CymEve</td>
<td>AF358479</td>
<td></td>
</tr>
<tr>
<td>C. gilmanii</td>
<td>CymGil</td>
<td>AY146830, AY146805</td>
<td></td>
</tr>
<tr>
<td>C. ghauus</td>
<td>CymGhau</td>
<td>AY146840</td>
<td></td>
</tr>
<tr>
<td>C. globosus</td>
<td>CymGlob</td>
<td>U78398, U78458</td>
<td></td>
</tr>
<tr>
<td>C. goodrichii</td>
<td>CymGood</td>
<td>AY146841</td>
<td></td>
</tr>
<tr>
<td>C. ibapensis</td>
<td>CymIbap</td>
<td>AF358480, AF358447</td>
<td></td>
</tr>
<tr>
<td>C. jonesii</td>
<td>CymJones</td>
<td>AF358484, AF358448</td>
<td></td>
</tr>
<tr>
<td>C. lapidosus</td>
<td>CymLapi</td>
<td>AY146842, AY146808</td>
<td></td>
</tr>
<tr>
<td>C. longifolius</td>
<td>CymLongf</td>
<td>AF358482, AF358549</td>
<td></td>
</tr>
<tr>
<td>C. longipes</td>
<td>CymLongp</td>
<td>AF358483</td>
<td></td>
</tr>
<tr>
<td>C. macrorhizus</td>
<td>CymMacr</td>
<td>AY146843, AY146809</td>
<td></td>
</tr>
<tr>
<td>C. melanotilina</td>
<td>CymMel</td>
<td>AY146844, AY146810</td>
<td></td>
</tr>
<tr>
<td>C. minimus</td>
<td>CymMini</td>
<td>AF358484, AF358554</td>
<td></td>
</tr>
<tr>
<td>C. montanus</td>
<td>CymMont</td>
<td>AF358485, AF358553</td>
<td></td>
</tr>
<tr>
<td>C. multinerus</td>
<td>CymMult</td>
<td>AY146845, AY146811</td>
<td></td>
</tr>
<tr>
<td>C. newberryi</td>
<td>CymNewb</td>
<td>AF358486, AF358553</td>
<td></td>
</tr>
<tr>
<td>C. nivalis</td>
<td>CymNiva</td>
<td>AY146846, AY146812</td>
<td></td>
</tr>
<tr>
<td>C. panacatiolius</td>
<td>CymPana</td>
<td>AF358488</td>
<td></td>
</tr>
<tr>
<td>C. planus</td>
<td>CymPlan</td>
<td>AF358489, AF358556</td>
<td></td>
</tr>
<tr>
<td>C. purpurascens</td>
<td>CymPurp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mt. Jiwangsan (M. Ram 8892)
Table 1. Continued.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Abbreviation</th>
<th>Voucher</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. purpureus</td>
<td>CymPur</td>
<td>AF364900</td>
<td></td>
</tr>
<tr>
<td>C. ripleyi</td>
<td>CymRip</td>
<td>Y149947, Y149913</td>
<td></td>
</tr>
<tr>
<td>C. rosei</td>
<td>CymRose</td>
<td>Y148848</td>
<td></td>
</tr>
<tr>
<td>C. williamsii</td>
<td>CymWill</td>
<td>AF358491, AF358568</td>
<td></td>
</tr>
<tr>
<td>Dystaenops takeniilacea</td>
<td>DysTake</td>
<td>Y58824</td>
<td></td>
</tr>
<tr>
<td>Halocystis melanotillingia</td>
<td>HalMela</td>
<td>Y528003, Y330503</td>
<td></td>
</tr>
<tr>
<td>Ligusticum sinense</td>
<td>LigSine</td>
<td>DG311699</td>
<td></td>
</tr>
<tr>
<td>L. Abedi</td>
<td>LigTenu</td>
<td>Y348215</td>
<td></td>
</tr>
<tr>
<td>Ostericum sieboldii</td>
<td>OstSieb</td>
<td>Y348219</td>
<td></td>
</tr>
<tr>
<td>Peucedanum terebinthaceum</td>
<td>PeuTere</td>
<td>Y588216</td>
<td></td>
</tr>
<tr>
<td>P. japonicum</td>
<td>PeuJapo</td>
<td>AF169277, AF169278</td>
<td></td>
</tr>
<tr>
<td>Physospernum cornubienne</td>
<td>PhyCorn</td>
<td>U78382, U78442</td>
<td></td>
</tr>
<tr>
<td>Pimpinella affinis</td>
<td>PimAffi</td>
<td>Y581780</td>
<td></td>
</tr>
<tr>
<td>P. eriocarpa</td>
<td>PimErio</td>
<td>Y581750</td>
<td></td>
</tr>
<tr>
<td>Plerospernum foetens</td>
<td>PleFoot</td>
<td>AF008639, AF008118</td>
<td></td>
</tr>
<tr>
<td>Sellaria brevis</td>
<td>SellBrev</td>
<td>Y129029</td>
<td></td>
</tr>
<tr>
<td>Tillinia ajanensis</td>
<td>TillAjan</td>
<td>Y583839, Y330505</td>
<td></td>
</tr>
<tr>
<td>T. tsusimensis</td>
<td>TiltTsus</td>
<td>Mt Geumosan (M. Kim 8004)</td>
<td></td>
</tr>
</tbody>
</table>

따라서 큰길나물에 대한 형태 및 ITS 염기서열을 조사하여 분류학적 위치에 대해 재검토하였다.

재료 및 방법

외부형태학적 형질을 관찰하기 위해 큰길나물은 주왕산의 생체재료를 사용하였으며, 중간 표본은 전북대학교 생물학과 풍림실(JNU)에 보관하였다. 뇌미나리속(Ostericum)과 바디나문속(AngeIica)에 관한 형질은 Kim et al.(2007)의 결과를 참조하였으며, 복미에 분포하는 Cymopterus속에 관한 형질은 Hitchcock and Cronquist(1973)의 자료를 참조하였다.

DNA 실험에 사용한 큰길나물과 대마참나물은 각각 주왕산(Aug. 20, 2007)과 금요산(Aug. 24, 2007)에서 채집한 재료를 사용하였다(Table 1). DNA 추출은 아미에서 채집한 생체를 DNeasy Plant Mini Kit (QIAGEN, Germany)를 이용하였다. PCR은 template DNA 5 μl, Taq DNA polymerase 1 μl, 10X buffer 5 μl, 25mM MgCl2 3 μl, 2.5 mM dNTP 5 μl, primer ITS1 2 μl, primer ITS4 2 μl를 포함한 총 43 μl의 반응액을 95℃에서 3분 동안 pre-denaturation 시킨 후, 95℃에서 1분의 denaturation, 52℃에서 1분간 annealing, 72℃에

347
서 3분의 extension으로 이루어지는 thermal cycle을 30회 반복하였으며, 72°C에서 7분간 final extension 과정을 거쳐 완료하였다. Cycle Sequencing 반응은 BigDye Terminator Cycle Sequencing Kit (PE Applied Biosystems)를 사용하여 수행하였고, Automated sequencing은 ABI PRISM 3730XL Analyzer (PE Applied Biosystems)를 사용하였다. 한편 군외군(outgroup)은 기존의 연구결과를 토대로 Pleurospermeae의 *Pleurospermum foetens*와 *Physospermum cornubiense*로 하였다(Downie et al., 2002).

DNA 염기서열은 Sequencher(version 4.1: Gene Code, Ann Arbor, Michigan, USA)를 사용하여 얻어지는 sequence를 전부 모은 후, Clustal X program(Thompson et al., 1997)을 이용하여 염기서열을 정렬하였다. ITS 1, 5.8S, ITS 2 구간의 염기서열은 전문 연구자들에 의해 연구된 염기서열을 gene bank에서 데이터를 가져와 비교하여 결정하였다(Table 1). 계통 분석은 PAUP ver. 4.0b(Swofford, 2002)를 사용하여 수행하였고, 분석 조건은 Heuristic search와 Tree Bisection Reconnection (TBR) branch swapping을 적용하여 수행하였고, bootstrap value는 100회 반복하여 얻었다(Felsenstein, 1985).

결 과

1. 외부형태학적 특징

 큰참나물과 근연분류군의 외부형태학적 형질을 조사한 결과는 Table 2에 나타내었다.

 앞: 큰참나물은 유상복엽인 목련이 하리대마참나물(Tilia japonica)이나 참나문속(Pimpinella)처럼 삼출엽이다. 또한 뿔YYY한 강모상 털이 덮여 있으면 털은 흰색이나 투명으로 나타나며, 이같은 강모상 털은 대마참나물과 밥미나리속(Osorium)의 일부 종에서도 관찰되었다.

 화서: 큰참나물은 꽃상행태로 한쪽 방향으로 호생 배열하여 대마참나물과 유사성을 보인다(Kim et al., 2007). 이같은 특징은 적신이 지그재그 형태로 여러 방향으로 배열하는 바디나물속(Angelica)과 흩어져 구별된다.

 악치(calyx teeth): 악치는 5개가 상각형으로 크고 투명하게 존재한다. 따라서 악치의 형태가 밥미나리속이나 참나문속과 유사성을 보이나, 악치가 혼합적인 바디나물속이나 대마참나물과는 틀리게 구별된다(Yoon, 1994, 2001).

 분과(mericarps): 큰참나물의 분과는 비대칭이고 3 내지 4개의 납개형 뿌리를 가지고 있어, 대칭이고 5개의 납개형 뿌리를 가진 복미에 분포하는 Cymopterus속과 틀리게 구별된다.

2. 분자계통학적 특징

 큰참나물의 분자학적 위치를 결정하기 위해 근연 분류군과 분자계통학적 연구를 수행한 결과 큰참나물의 ITS 1은 219 bp, ITS 2는 224 bp로 나타났다(Appendix 1). 또한 GC content
Table 2. Comparison of Cymopterus melanotilingia with related taxa.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Taxon</th>
<th>Cymopterus melanotilingia</th>
<th>Cymopterus species in North America</th>
<th>Ostericum</th>
<th>Angelica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>Erect</td>
<td>Erect, acranulate</td>
<td>Erect</td>
<td>Erect</td>
<td>Erect</td>
</tr>
<tr>
<td>Leaves</td>
<td>Termeate</td>
<td>Fimbrire dissected</td>
<td>Patinate</td>
<td>Patinate</td>
<td>Patinate</td>
</tr>
<tr>
<td>Petals</td>
<td>Purple</td>
<td>White, yellow</td>
<td>White</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Calyx teeth</td>
<td>Conspicuous</td>
<td>Conspicuous to obsolete</td>
<td>Conspicuous</td>
<td>Obsolete</td>
<td>Obsolete</td>
</tr>
<tr>
<td>Mericarp</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
</tr>
<tr>
<td>Compression</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
<td>Symmetric</td>
</tr>
<tr>
<td>Carpophore</td>
<td>2-2 eft to base</td>
</tr>
<tr>
<td>Commissure (inner face)</td>
<td>Plane</td>
<td>Plane</td>
<td>Plane</td>
<td>Plane</td>
<td>Plane</td>
</tr>
<tr>
<td>Ribs (number)</td>
<td>3 or 4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Lateral ribs (at maturity)</td>
<td>Divergent</td>
<td>Divergent</td>
<td>Divergent</td>
<td>Divergent</td>
<td>Divergent</td>
</tr>
<tr>
<td>Lateral ribs (shape)</td>
<td>Broad</td>
<td>Broad</td>
<td>Broad</td>
<td>Broad</td>
<td>Broad</td>
</tr>
<tr>
<td>Lateral ribs (prominence)</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
</tr>
<tr>
<td>Dorsal rib (shape)</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
<td>Winged</td>
</tr>
<tr>
<td>Dorsal rib (prominence)</td>
<td>Prominent</td>
<td>Prominent</td>
<td>Prominent</td>
<td>Prominent</td>
<td>Prominent</td>
</tr>
<tr>
<td>Pericarp</td>
<td>Unlayered</td>
<td>Unlayered</td>
<td>Multilayered</td>
<td>Multilayered</td>
<td>Multilayered</td>
</tr>
<tr>
<td>Vitellae (oil glands in furrows)</td>
<td>0</td>
<td>5-9</td>
<td>1-3</td>
<td>(2)</td>
<td>(2)</td>
</tr>
<tr>
<td>Vitellae in commissure</td>
<td>0</td>
<td>8-10</td>
<td>2-8</td>
<td>(4)</td>
<td>(4)</td>
</tr>
</tbody>
</table>

는 ITS 1이 58.4%이며, ITS 2는 56.3%로 ITS 1이 2에 비해 약간 높았으며, 전체적으로 약 56.8%로 계산되었다(Table 3). 근연 분류군을 포함한 ITS 1은 215-219 bp, ITS 2는 215-228 bp로 ITS 2가 1보다 길었고, 길이 변화는 ITS 2가 1에 비해 더 높게 나타났다. ITS 지역에 대한 정렬에 의해 gap이 발생했으며 그 결과 ITS 1, 2는 각각 230, 244 bp로 계정되 륰되었다. ITS 1과 ITS 2의 전체 길이는 474개의 염기로 구성되었으며 계통학적으로 정보를 갖는 부분은 197부위였다. MP 분석 결과 482단계로 구성된 18개의 최소가경의 분계도가 얻어졌으며 계통학적으로 의미가 있는 부분만을 포함한 이들 계통수들간의 CI는 0.52, RI는 0.59 그리고 RC는 0.31이었다.

최소가경 (Parsimony) 분계도 (Fig. 1) 와 완전일치분계도 (Fig. 2) 에서 복미 원산인 Cymopterus속 36개 종들이 크게 두 개의 그룹으로 나누어질 정도로 종간의 염기세열 변이가 토부하여 Downie et al. (2002)이 언급한 것처럼 다계원 (polyphyly)의 특징을 보여 주었다. 큰참나물은 이들 복미 원산인 Cymopterus속 종들과 별개의 분계조를 형성하여 틀리게 구별되었다. 또한 러시아의 우수리지역에서 재현한 Halosciastrum melanotilingia (HaMela)을 가지고 연구한 Downie et al. (2002)의 연구결과와 1-2개 염기시열이 다른 린 지의 값(Fig. 1), 큰참나물의 러시아의 Halosciastrum melanotilingia와 동일종임을 시사하고 있다. 이상의 ITS 연구결과는 큰참나물의 계통을 이해하는데 매우 유용한 형질인 것으로 판단되었다.
Table 3. Size and G+C% of ITS 1 and 2 of *Cymopterus melanotiltinga* with related taxa.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>ITS 1</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>length</td>
<td>C+G%</td>
<td>length</td>
<td>C+G%</td>
</tr>
<tr>
<td>Cymopterus acaulis</td>
<td>216</td>
<td>59.3%</td>
<td>221</td>
<td>57.5%</td>
</tr>
<tr>
<td>C. neuberryi</td>
<td>216</td>
<td>59.3%</td>
<td>221</td>
<td>57.9%</td>
</tr>
<tr>
<td>C. bufbosus</td>
<td>216</td>
<td>57.9%</td>
<td>221</td>
<td>55.7%</td>
</tr>
<tr>
<td>Peucedanum japonicum</td>
<td>216</td>
<td>57.4%</td>
<td>221</td>
<td>57.0%</td>
</tr>
<tr>
<td>Cymopterus duchesnensis</td>
<td>216</td>
<td>56.9%</td>
<td>222</td>
<td>55.9%</td>
</tr>
<tr>
<td>C. goodrichii</td>
<td>216</td>
<td>58.3%</td>
<td>222</td>
<td>56.3%</td>
</tr>
<tr>
<td>C. panaculifolius</td>
<td>216</td>
<td>56.5%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>C. cinerarius</td>
<td>215</td>
<td>58.3%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>C. aboriginum</td>
<td>216</td>
<td>56.0%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>C. evertii</td>
<td>216</td>
<td>55.8%</td>
<td>222</td>
<td>57.2%</td>
</tr>
<tr>
<td>C. glimanti</td>
<td>216</td>
<td>56.3%</td>
<td>223</td>
<td>57.0%</td>
</tr>
<tr>
<td>C. basalticus</td>
<td>215</td>
<td>54.7%</td>
<td>222</td>
<td>58.6%</td>
</tr>
<tr>
<td>C. globosus</td>
<td>216</td>
<td>57.4%</td>
<td>222</td>
<td>58.1%</td>
</tr>
<tr>
<td>C. ripleyi</td>
<td>216</td>
<td>56.0%</td>
<td>222</td>
<td>58.1%</td>
</tr>
<tr>
<td>C. lapidiferus</td>
<td>216</td>
<td>56.5%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>Pleurospermum foetens</td>
<td>216</td>
<td>50.5%</td>
<td>215</td>
<td>55.3%</td>
</tr>
<tr>
<td>Physospermum cornubience</td>
<td>218</td>
<td>51.4%</td>
<td>220</td>
<td>55.0%</td>
</tr>
<tr>
<td>Cymopterus glaucus</td>
<td>216</td>
<td>55.1%</td>
<td>222</td>
<td>56.3%</td>
</tr>
<tr>
<td>C. longipes</td>
<td>216</td>
<td>57.4%</td>
<td>222</td>
<td>57.2%</td>
</tr>
<tr>
<td>C. planosus</td>
<td>216</td>
<td>56.0%</td>
<td>222</td>
<td>56.8%</td>
</tr>
<tr>
<td>C. davisi</td>
<td>216</td>
<td>56.5%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>C. minimus</td>
<td>216</td>
<td>56.0%</td>
<td>222</td>
<td>57.2%</td>
</tr>
<tr>
<td>C. purpureus</td>
<td>216</td>
<td>55.6%</td>
<td>222</td>
<td>57.2%</td>
</tr>
<tr>
<td>C. rosei</td>
<td>215</td>
<td>55.8%</td>
<td>222</td>
<td>57.2%</td>
</tr>
<tr>
<td>C. jonesii</td>
<td>216</td>
<td>55.1%</td>
<td>222</td>
<td>54.5%</td>
</tr>
<tr>
<td>C. douglasi</td>
<td>216</td>
<td>56.9%</td>
<td>222</td>
<td>58.1%</td>
</tr>
<tr>
<td>C. ibapensis</td>
<td>216</td>
<td>58.3%</td>
<td>221</td>
<td>57.9%</td>
</tr>
<tr>
<td>C. corrugatus</td>
<td>215</td>
<td>58.1%</td>
<td>220</td>
<td>58.2%</td>
</tr>
<tr>
<td>C. co solitary</td>
<td>216</td>
<td>56.7%</td>
<td>221</td>
<td>57.0%</td>
</tr>
<tr>
<td>C. desertico</td>
<td>217</td>
<td>57.6%</td>
<td>221</td>
<td>56.6%</td>
</tr>
<tr>
<td>C. macrorhizus</td>
<td>217</td>
<td>56.2%</td>
<td>221</td>
<td>57.5%</td>
</tr>
<tr>
<td>C. montanus</td>
<td>217</td>
<td>57.6%</td>
<td>221</td>
<td>57.9%</td>
</tr>
<tr>
<td>C. constancei</td>
<td>217</td>
<td>57.1%</td>
<td>221</td>
<td>57.0%</td>
</tr>
<tr>
<td>C. multiverseus</td>
<td>216</td>
<td>59.3%</td>
<td>221</td>
<td>56.6%</td>
</tr>
<tr>
<td>C. purpurascens</td>
<td>216</td>
<td>58.7%</td>
<td>221</td>
<td>57.9%</td>
</tr>
<tr>
<td>C. nitalis</td>
<td>216</td>
<td>55.1%</td>
<td>222</td>
<td>58.0%</td>
</tr>
<tr>
<td>C. williamsonii</td>
<td>216</td>
<td>58.1%</td>
<td>223</td>
<td>57.4%</td>
</tr>
<tr>
<td>C. longilobus</td>
<td>218</td>
<td>56.9%</td>
<td>222</td>
<td>58.1%</td>
</tr>
<tr>
<td>C. beckii</td>
<td>216</td>
<td>56.9%</td>
<td>221</td>
<td>58.4%</td>
</tr>
<tr>
<td>Cnidium monneri</td>
<td>216</td>
<td>55.6%</td>
<td>222</td>
<td>57.7%</td>
</tr>
<tr>
<td>Tithinga tsusimensis</td>
<td>216</td>
<td>56.9%</td>
<td>221</td>
<td>57.9%</td>
</tr>
<tr>
<td>Angelica acutiloba</td>
<td>216</td>
<td>57.9%</td>
<td>221</td>
<td>57.5%</td>
</tr>
</tbody>
</table>
3. 분류군의 처리

Halosiastrum melanotilingia (H. Boissieu) Pimenov & Tikhomirov in Nauche

Ostericum melanotilingia (H. Boissieu) Kitagawa in J. Jap. Bot. 17: 561 (1941)

국명: 큰장미풍(이, 1980)
Type Locality: Busan in Korea
국내분포: 강원(동해, 장원, 참봉산, 거리항산), 경기(북한산, 광양, 명지산), 충북(속리산), 충남(계룡산), 전북(덕유산, 적성산), 강북(모백산, 주왕산, 대연산, 금요산), 전남(지리산), 경남(가야산)
국외분포: 러시아(우수리)
논의: 큰참나물은 3줄업을 가지 대마참나물이나 참나물과 유사하다. 문과가 비대칭이고 3 내지 4개의 날개형 녹선을 가지고 있어 두려이 구별이 된다.

큰참나물과 그 근연분류군에 대한 검색표

1. 문과는 반구형이거나 납작하며 접합면이 높다.
2. 배목은 날개형.
3. 문과는 크기가 다르고 비대칭. 녹선은 문과마다 3 또는 4개
 ──────── 큰참나물 Haloscastrum melanotilingia
4. 배목은 돌출형.
5. 문과는 크기가 같고 대칭. 녹선은 문과마다 5개
 ──────── Cymopterus
6. 배목은 돌출형.
7. 문과는 돌출하고 숙준. 과피는 단층
 ──────── 벼미나리속 Ostericum
8. 배목은 돌출하고 들기울. 과피는 다층.
9. 문과는 경계체 배면으로 압착
 ──────── 바다참나물속 Angelica
10. 배목은 압착체 배면으로 압착
 ──────── 대마참나물 Tilia tsusimensis
11. 문과는 거의 구형이며 접합면이 좁다
 ──────── 참나물속 Pimpinella

고찰

큰참나물의 학명은 1903년 Selinum melanotilingia H. Boissieu로 명명된 이후, 학자마다 Peucedanum속(Boissieu, 1908), Pimpinella속(Nakai, 1917), Ligusticum속(Kom., 1931), Ostericum속(Kitagawa, 1941), Haloscastrum속(Pimenov and Tikhonirov, 1968), Cymopterus속(Yoon, 2001)에 포함시킬 정도로 분류학적 위치가 매우 불확실한 분류군이었다. 본 연구의 외부형태학적 견을 종합해 보면 큰참나물은 문과가 대칭하고 5개의 날개형 녹선을 가진 복미에 분포하는 Cymopterus속과 두려이 구별되었다. 큰참나물은 3줄업을 가지 형태학적으로 대마참나물이나 참나물과 비슷하며, 배목과 배면에 녹선이 돌출하지 않고 동형의 꽃을 가진 참나물속(Pimpinella)과 두려이 구별되며(Jang et al., 1999), 문과의 배면과 배면에 날개 대신에 크기가 같은 녹선이 돌출하고 이형의 화색 꽃잎을 가진 대마참나물(Tilia tsusimensis (Yabe) Kitagawa)과 구별되었다(Kim et al., 2007). 또한 큰참나물은 악치가 삼각형으로 두려하고 단층의 과피를 가진 벼미나리속(Ostericum)과 유사성을 보이나(Sun et al., 2000), 문과가 대칭이고 3~4개의 날개형 녹선을 가지고 있어 구별되었다. 큰참나물은 날개형만 축과 배면으로 간주한 문과를 가진 바다참나물속(Angelica)과 유사하나, 단층의 과피와 두려한 악치를 가지고 있어 구별되었다(Yoon, 1994).
이처럼 큰참나무는 외부형태학적 및 특성에서 복미산 Cymopterus속 뿐만 아니라 될프나리속이나 바디나무속 속과 둥짓이 구별되었으며, ITS에 의한 분자계통학적 연구결과도 큰참나무는 복미지 분포하는 Cymopterus속과 둥짓이 구별되는 별개의 속임을 보여 주었다. 또한 러시아의 우수리지역에서 채집한 Halosciastrum melanotilingia와 동일증의 관계를 보여 주고 있다. 따라서 큰참나무는 Koidzumi(1941)가 큰참나무를 기준종(type species)으로 하여 새로운 속으로 설정한 Halosciastrum속에 포함시키어야 할을 지지해 주었다. 그러므로 큰참나무의 핵심적인 학명은 Halosciastrum melanotilingia (H. Boissieu) Pimenov & Tikhonirov가 타당하다고 생각된다.

사 사
본 연구는 부분적으로 2008년도 전북대학교 연구기반조성연구비로 수행되었습니다. 또한 실현하는 동안 여러 가지로 도움을 준 전북대학교 생물과학과 원경숙 대학원생과 국립생물자원관 소순구 연구원에게 감사의 마음을 전합니다.

인용 문헌
Kim, M. S. So, E. Seo, H. Park, K. Han and K. Heo. 2007. Taxonomical review for
Appendix 1. Aligned ITS sequences of the *Cymopterus melanotilus* and *Tillingia tsubimensis*. ITS 1: 1-221; 5.8S: 222-384; ITS 2: 385-610. Refer Table 1 for taxon abbreviations.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Sequence (ITS 1)</th>
<th>Sequence (ITS 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TilTsus</td>
<td>TGGAAATTCTCAGTTAGGTGCAATTAACGCTAAAACAGTAAAGTTTTCACAGG</td>
<td>CATTTGCTGAAGTAGAGTATAAGGGTGGTGCAATTAACGCTAAAACAGTAAAGTTTTCACAGG</td>
</tr>
<tr>
<td>CymMela</td>
<td>TGGAAATTCTCAGTTAGGTGCAATTAACGCTAAAACAGTAAAGTTTTCACAGG</td>
<td>CATTTGCTGAAGTAGAGTATAAGGGTGGTGCAATTAACGCTAAAACAGTAAAGTTTTCACAGG</td>
</tr>
<tr>
<td></td>
<td>[10]</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>330</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>360</td>
<td>360</td>
</tr>
<tr>
<td></td>
<td>370</td>
<td>370</td>
</tr>
<tr>
<td></td>
<td>380</td>
<td>380</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>410</td>
<td>410</td>
</tr>
<tr>
<td></td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>430</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>460</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>470</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>530</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>540</td>
<td>540</td>
</tr>
<tr>
<td></td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>560</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>570</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>580</td>
<td>580</td>
</tr>
<tr>
<td></td>
<td>590</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>600</td>
</tr>
</tbody>
</table>

357
Taxonomic review of *Cymopterus melanotiltingia* (H. Boissieu) C. Y. Yoon in Apiaceae

Jachoon Koo and Muyeol Kim

Division of Biological Sciences and Korean Institute for Biodiversity Research, Chonbuk National University, Jeonju 561–756, Korea; Division of Science Education, Chonbuk National University, Jeonju 561–756, Korea

The systematic position of *Cymopterus melanotiltingia* (H. Boissieu) C. Y. Yoon in Apiaceae was reevaluated based on the ITS sequence data. Its diagnostic characteristics include its asymmetric mericarps, 3-4 mericarp ribs, winged dorsal ribs, and ternate leaves. It is morphologically similar to *Tilingia tsusimensis* and *Pimpinella* in having ternate leaves. It is distinguished from *Ostericum* by having symmetric mericarps, 5 mericarp ribs, and rounded dorsal ribs. It also looks like *Angelica* with broadly winged lateral ribs and strongly dorsally compressed mericarps, but it is distinguished by having conspicuous calyx teeth and unilayer pericarps. *Cymopterus melanotiltingia* formed a different clade group with *Cymopterus* species distributed in North America based on ITS sequences, and it supports the close relationships with *Halosciastrum melanotiltingia*. Thus, we conclude that this species should be referred to *Halosciastrum melanotiltingia* (H. Boissieu) Fimenov & Tikhonirov.

Keywords: *Cymopterus melanotiltingia*, Apiaceae, *Halosciastrum melanotiltingia*, ITS

*Corresponding author: Phone +82-63-270-2788, Fax +82-63-270-3362, mykim@chonbuk.ac.kr