Taxonomic position and genetic differentiation of Korean Astragalus mongholicus Bunge

In-Su Choi, So-Young Kim and Byoung-Hee Choi*

Department of Biological Sciences, Inha University, Incheon 402-751, Korea
1Nature Conservation Research Division, National Institute of Environmental Research, Incheon 404-708, Korea

(Received 4 December 2012; Revised 4 February 2013; Accepted 2 March 2013)

한국산 황기의 분류학적 위치 및 유전적 분화

최인수·김소영·최병희*

인하대학교 자연과학대학 생명과학과, 1국립환경과학원 자연자원연구과

ABSTRACT: To clarify the taxonomic position for Astragalus nakaianus and provide correct scientific name for A. mongholicus cultivar in South Korea, we examined external morphological characters and sequence variations from ITS and five cp non-coding DNA regions. Genetic structure was also analyzed for 61 individuals from three populations using nine microsatellite loci. We found no significant difference between the South Korean cultivar and A. mongholicus var. dahuricus when morphology and ITS sequences were considered. Morphologically, A. nakaianus specimens varied somewhat from A. mongholicus var. mongholicus and var. dahuricus in habit, plant height, and lengths of leaf axis and leaflet. Although sequence data from ITS and cp non-coding DNA regions could not distinguished A. nakaianus from A. mongholicus, microsatellite analysis revealed strong structuring between the cultivar and A. nakaianus. Therefore, we conclude that the South Korean A. mongholicus cultivar should be treated as A. mongholicus var. dahuricus and that A. nakaianus should be merged into A. mongholicus as a variety, i.e., A. mongholicus var. nakaianus.

Keywords: Taxonomic position, Astragalus mongholicus cultivar, Astragalus nakaianus, external morphological characters, genetic differentiation

적요: 본 연구에서는 제주황기(Astragalus nakaianus)의 분류학적 위치를 명확히 하고 한국산 재배황기(A. mongholicus cultivar)의 올바른 학명을 부여하기 위하여 외부형태형질과 ITS 그리고 cp 코딩 DNA의 염기서열을 조사하였다. 또한 9개의 마이크로세털라이트 마커를 이용하여 3집단 61개체에 대한 유전적 구조가 분석되었다. 그 결과, 남한산 재배황기와 A. mongholicus var. dahuricus 사이에서는 형태와 ITS 염기서열에서 유의한 차이점이 없었다. 제주황기의 A. mongholicus var. mongholicus 그리고 var. dahuricus와 줄기의 습성, 식물체의 길이, 엽축의 길이, 소엽의 길이 등에서 형태적으로 차이를 보였다. ITS와 cp non-coding 구간 염기서열에서 제주황기는 황기(A. mongholicus)와 차이점을 보이지 않았지만, 마이크로세털라이트 마커 분석에서 제주황기와 남한산 재배황기 간에 구분하기 구조를 보였다. 이러한 결과들을 보았을 때, 한국산 재배황기는 A. mongholicus var. dahuricus로 처리해야 하며 제주황기는 A. mongholicus의 변종으로서 취급되어야 한다.

주요어: 분류학적 위치, 재배황기, 제주황기, 외부형태형질, 유전적분화

*Author for correspondence: bhchoi@inha.ac.kr

http://www.pltaxa.or.kr
Copyright © 2013 the Korean Society of Plant Taxonomists
Astragalus L. (Fabaceae), the largest angiosperm genus in the world, comprises about 3,000 species (Lock and Simpson, 1991) and it is considered a remarkable example of adaptive radiation (Kazempour Osaloo et al., 2003). Members are found primarily in cold to warm arid and semiarid mountainous regions in the Northern Hemisphere and in South America (Chaudhary et al., 2008). A. mongholicus Bunge is a perennial herb growing on mountainous grasslands in East Asia (Xu and Podlech, 2010). In addition, it is often cultivated as an important pharmacological resource in East Asia (Guo et al., 2010). Because plants show great morphological variation, this species has been separated into geographical varieties (Chen and Zhu, 1990; Xu and Podlech, 2010). Although it has been known as A. membranaceus Bunge in regional flora (Fu et al., 1993; Ohashi, 2001; Lee, 2003), this name is illegitimate because it is a later homonym of A. membranaceus Moench (1794). Instead, Podlech (1999) has treated this species as a variety, i.e., A. mongholicus Bunge var. dahuricus (DC.) Podlech. This species is also sometimes considered a member of the A. penduliflorus complex (Chen and Zhu, 1990; Zhu and Chen, 1991; Zhu, 1996). In revision work of A. penduliflorus, Zhu (2005) has reduced this species to an intra-specific taxon of A. penduliflorus—A. penduliflorus subsp. mongholicus var. dahuricus X.Y. Zhu. However, Xu and Podlech (2010) treat it as a synonym of A. mongholicus Bunge. However, none of those studies have examined South Korean specimens. Plants of A. mongholicus var. dahuricus are naturally distributed in North Korea as A. penduliflorus subsp. mongholicus var. dahuricus (Zhu, 2005) and also cultivated (Im, 1998). A. mongholicus cultivar also exists in South Korea (Kim et al., 2000). Astragalus plants have been found growing on the subalpine grassland of Mt. Halla (Jeju Island), where they are known as wild endemics (Nakai, 1914; Lee and Tho, 1959; Tho, 1971; Lee, 1981; Kim et al., 2006; Lee, 2006). This plant was first recorded, as A. membranaceus var. alpinus Nakai nom. nud. in a floristic list for Jeju Island (Nakai, 1914). Lee and Tho (1959) reported these plants from Mt. Halla as a distinct species, A. hallasanensis Y.N. Lee, but without description. This declaration was based on its histological differences from A. membranaceus, including features for the stomata, pollen, and the structure of leaves, stems, and roots. Moreover, Tho (1971) suggested that these Mt. Halla plants should be separated from A. membranaceus based on karyotype analysis, even though they have the same number of chromosomes (2n = 16). Lee (1981) described this plant as A. nakaianus, separate from A. membranaceus, because of its tuffed stems and very small leaflets. Recent cytogenetic study by Kim et al. (2006) has also re-confirmed A. nakaianus as distinct from A. mongholicus and A. membranaceus by karyotype. However, it has now been merged into A. membranaceus, i.e., A. membranaceus var. nakaianus Y.N. Lee (Lee, 2006). Thus, its taxonomic status is controversial. This species is sometimes regarded as a geographical form of A. mongholicus because its diagnostic characteristics are considered to be just vegetative traits. Moreover, it is listed as “critically endangered” in the Rare Plants Data Book in Korea (Korea National Arboretum, 2008).

Nuclear ribosomal ITS and Chloroplast non-coding DNA regions have been used in the analysis of angiosperms and in examinations of lower-level (genus and species) phylogeny (Baldwin, 1992; Baldwin et al., 1995; Mort et al. 2007). In particular, phylogenetic analysis based on ITS has been very successful in distinguishing A. mongholicus var. mongholicus and var. dahuricus from other related taxa at the species level (Dong et al., 2003; Yip and Kwan, 2006). A recent DNA barcoding investigation (Guo et al., 2010) of this species has also verified findings previously reported that ITS is effective as a species identification marker. However, the infra-specific ITS sequence variations seen in this species could not identify the intra-specific taxa (Dong et al., 2003; Yip and Kwan, 2006; Guo et al., 2010). Simple Sequence Repeats (SSRs), or microsatellites (Litt and Luty, 1989), are sequences of DNA made up of randomly repeated motifs one to six bases long (Hancock, 1999). They are useful for determining relationships among closely related species (Weising et al., 2005; Bowles et al., 2010) especially when sequence data have revealed little variation (Yao et al., 2008).

Because the taxonomic position of A. nakaianus is unclear and the scientific name (A. membranaceus) that is primarily applied to a Korean A. mongholicus cultivar is illegitimate, the objectives of the present study were to determine the taxonomic position of A. nakaianus and propose the correct nomenclature for that cultivar based on morphological and genetic variations.

Materials and Methods

1. Morphological observations

Materials for the Astragalus mongholicus cultivar and A. nakaianus were collected in South Korea from 2002 to 2011 (Appendix). Voucher specimens are kept in the Herbarium of Inha University (IUI). To observe their morphological characters, we loaned specimens including A. mongholicus cultivar, A. mongholicus var. dahuricus, and A. nakaianus from the following herbaria: Ewha Womans University (EWH), Kangwon National University (KWNU), Sungkyunkwan University (SKK), Seoul National University, College of
2. Nuclear ribosomal ITS and cp non-coding DNA sequences

Genomic DNA was extracted from fresh or silica gel-dried leaves, using a G-spin™ Ilp Kit for plants (iNtRON, Seongnam, Korea). The nuclear ribosomal region, including ITS1, 5.8S, and ITS2, was amplified with primer pair ITS-5/ITS-4 (White et al., 1990). One sample each was examined from the South Korean A. mongholicus cultivar and A. nakaianus (Table 1). We also analyzed ITS sequences reported previously (Guo et al., 2010). Five cp non-coding DNA regions were amplified via PCR from four individuals each of the cultivar and A. nakaianus (Table 2). Universal primers were used to amplify trnL-F, which included the trnL intron and trnL-trnF intergenic spacer (Taberlet et al., 1991), as well as intergenic spacers for psbA-trnH (Sang et al., 1997), psbC-trnS (Nishizawa and Watano, 2000), rpoB-trnC (Shaw et al., 2005), and petD-rpoA (Nishizawa and Watano, 2000). PCR was conducted with a GeneAmp® PCR System 2700 Thermal Cycler (Applied Biosystems). All PCR conditions included an initial denaturation at 94 °C for 10 min; followed by 35 cycles at 94°C for 30 s, 52°C for 45 s, and 72°C for 1 min; with a final extension at 72°C for 10 min. PCR products were visualized on 2% agarose gels, purified by PCRquick-spin™ (iNtRON), and sequenced with an ABI 3100 Genetic Analyzer and an ABI BigDye™ Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems). All sequences were aligned manually using the program Clustal X ver. 1.83 (Thompson et al., 1997).

3. Microsatellite analysis

Genomic DNA was extracted according to the method described above for 18 individuals of the South Korean A. mongholicus cultivar collected at Cheoram-dong of Gangwon-do. Nine microsatellite markers were used which had previously been developed for Korean A. mongholicus: Astna1, Astna2, Astna4, Astna5, Astna6, Astna7, Astna8, Astna9, and Astna10 (Choi and Choi, in press). PCR reaction and genotyping were conducted according to the method of Choi and Choi (in press). To infer structuring between that cultivar and A. nakaianus, we used a Bayesian model-based clustering method (STRUCTURE 2.0; Pritchard et al., 2000) based on data for nine microsatellite loci from 61 individuals of three Astragalus populations. Those populations included the data from Cheoram-dong as well as previously genotyped data (Choi and Choi, in press) from Bukdong-ri (A. mongholicus cultivar, n = 13) and Mt. Halla (A. nakaianus, n = 30). We performed 10 runs for each value of K (number of clusters) from 1 to 8. Each run employed the Markov chain method with 20,000 iterations (burn-in) and 10,000 Monte Chain Monte Carlo (MCMC) repetitions. The most appropriate number of clusters (K) was estimated based on the Evanno method (Evanno et al., 2005) as implemented in STRUCTURE HARVESTER (Earl and von Holdt, 2012). According to the program STRUCTURE, the most likely K as that wherein ln Pr(X | K) is maximized. Analysis of molecular variance (AMOVA) was conducted to partition the genetic variation between A. mongholicus cultivar and A. nakaianus via Fst. Data were tested for significance using the AMOVA option within GenAIEx 6.4 (Peakall and Smouse, 2006).

Results and Discussion

1. External morphology

Plant height: Samples were 50 to 100 cm tall for the Astragalus mongholicus cultivar and 15 to 40 (70) cm tall for

Table 1. Sites of variability in the aligned (ITS1, 5.8S, and ITS2) sequences of A. mongholicus.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Locality and Voucher No.</th>
<th>Position</th>
<th>GenBank Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. mongholicus var. nakaianus</td>
<td>Mt. Halla, Jeju-do, Korea, S.Y. Kim & J.S. Lee 307281</td>
<td>4</td>
<td>G C KC262198</td>
</tr>
<tr>
<td>A. mongholicus var. dahuricus*</td>
<td>Xunyi, Shaanxi, China</td>
<td>9</td>
<td>G C HM142275.1</td>
</tr>
<tr>
<td>A. mongholicus var. dahuricus</td>
<td>Mt. Mullae, Gangwon-do, Korea, S.Y. Kim et al. 308021</td>
<td>7</td>
<td>- T KC262199</td>
</tr>
<tr>
<td>A. mongholicus var. mongholicus*</td>
<td>Daqingshan, Inner Mongolia, China</td>
<td>4</td>
<td>G T HM142288.1</td>
</tr>
</tbody>
</table>

*data obtained from Guo et al., 2010.
A. nakaianus. Plant specimens described as A. mongholicus from China (25-60 cm; Xu and Podlech, 2010) and Russia (25-40 cm; Shishkin, 1946) shared a resemblance with A. nakaianus. Those described as A. membranaceus from China (50-100 cm; Fu et al., 1993) were similar to the South Korean cultivar examined here. Plants from Japan, identified as A. membranaceus (40-70 cm; Ohashi, 2001) were intermediate in their overall variation. Although there was overlap among specimens, plants of A. nakaianus were somewhat smaller than those of A. mongholicus from East Asia.

Habit: The growth form of the South Korean cultivar was singular or several, with an erect stem form that was also characteristic of A. membranaceus from China (Fu et al., 2001). By comparison, plants of A. membranaceus from Japan (Ohashi, 2001) showed tufted and erect forms. Samples of A. nakaianus were tufted but had an ascending or decumbent form. Although one might regard this as an ecotype, it was a trait that distinguished A. nakaianus from other A. mongholicus in East Asia.

Leaf: Axis of leaf: The leaf axes were generally shorter for A. nakaianus [2-5 (9) cm] than for the A. mongholicus cultivar (6-10 cm), such that the latter resembled A. penduliflorus subsp. mongholicus var. dahuricus [5-9 cm; Zhu, 2005]. Hairs on leaflet: Zhu (2005) has suggested that leaflets from both A. penduliflorus subsp. mongholicus var. mongholicus and var. dahuricus are glabrous on their upper surfaces, a trait coinciding with that of A. nakaianus. However, leaflets from the South Korean cultivar had pubescence on both surfaces, a trait also noted with A. membranaceus from Japan (Ohashi, 2001). Number of leaflets: At the intra-specific level, the number of leaflets has been used as a diagnostic characteristic among members of the A. mongholicus complex (Zhu, 2005; Zhao, 2006). Leaflet counts did not differ significantly between the South Korean A. mongholicus cultivar (6-10 pairs) and A. nakaianus (7-10 pairs). Such variations have also been reported for plants of A. penduliflorus subsp. mongholicus var. dahuricus [5] 7-11 (13) pairs; Zhu, 2005]. Length of leaflet: Leaflets were 15 to 20 mm long for the cultivar and 4 to 8 (9) mm long for A. nakaianus. Whereas the cultivar was similar in this trait to plants described as A. membranaceus, i.e., 15 mm long (Zhao, 2006), the leaflets from A. nakaianus resembled those from A. mongholicus in length, i.e., 10 mm (Zhao, 2006) and A. penduliflorus subsp. mongholicus var. mongholicus, 5 to 10 mm (Zhu, 2005).

Hairs of ovary and legume: Bunge (1868) has distinguished among species by the presence of hairs on the ovary, i.e., either pubescent (A. membranaceus) or glabrous (A. mongholicus). This separation in characteristics has been accepted by Fu et al. (1993) for A. membranaceus var. membranaceus and var. mongholicus, by Zhu (2005) for A. penduliflorus subsp. mongholicus var. mongholicus and var. dahuricus, and by Zhao (2006) for A. membranaceus and A. mongholicus. In the South Korean samples, those of the A. mongholicus cultivar and A. nakaianus had pubescent ovaries with very short, appressed black and white hairs.

2. Sequence variation

ITS: ITS sequences determined in this study were aligned and analyzed together with GenBank sequences from the A. mongholicus complex. The complete dataset included two taxa and 603 characters. Lengths were 227 to 228 bp for the ITS1 region, 164 bp for 5.8S, and 221 bp for the ITS2 region. Of 603 initial alignment positions, 601 sites were identical in length, i.e., 10 mm (Zhao, 2006) and A. penduliflorus subsp. mongholicus var. mongholicus, 5 to 10 mm (Zhu, 2005).

Table 2. Alignment of variable sites for chloroplast DNA from Korean Astragalus mongholicus.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Locality and Voucher No.</th>
<th>cpDNA regions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>trnL-F</td>
</tr>
<tr>
<td>A. mongholicus var. nakaianus</td>
<td>Mt. Halla, Jeju-do, I.S. Cho 1106208</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Mt. Halla, Jeju-do, I.S. Choi 1108030</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Mt. Halla, Jeju-do, I.S. Choi 1108040</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Mt. Halla, Jeju-do, I.S. Choi 1108049</td>
<td>*</td>
</tr>
<tr>
<td>A. mongholicus var. dahuricus</td>
<td>Mt. Mullae, Gangwon-do, S.Y. Kim et al. 308021</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td>Hwaam-ri, Gangwon-do, S.Y. Kim s.n.</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Bukdong-ri, Gangwon-do, I.S. Choi 1110013</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Cheoram-dong, Gangwon-do, I.S. Choi 1110022</td>
<td>*</td>
</tr>
</tbody>
</table>

*1, Duplication = ATGAA; 2, Duplication = AAACCCCCGAA
dahuricus from China. Although the sample from Mt. Mullae had an indel at nucleotide position 94, the relevant ITS sequences showed few differences among A. mongholicus and did not reflect morphological or geographical variations. Our findings concur with those of Guo et al. (2010) in terms of the effectiveness of ITS as a species identification marker, but not in terms of its efficiency at the intra-specific level. These results suggested that both the Korean A. mongholicus cultivar and A. nakaianus should be regarded as members of the A. mongholicus complex.

CpDNA: Five regions were successfully sequenced - psbA-trnH, trnL-F, psbC-trnS, rpoB-trnC, and petD-rpoA. Intra-specific cpDNA variations were detected in trnL-F and rpoB-trnC. Both are non-coding regions. Yang et al. (2011) have suggested that the psbA-trnH region varies between Chinese A. mongholicus and the South Korean A. mongholicus cultivar. However, we found no such variation between that cultivar and the A. nakaianus samples. The trnL-F region has duplication in ATGAA at nucleotide position 361 in the inland population (Mt. Mullae). Similarly, the rpoB-trnC region has duplication in AAACCCCCGA at nucleotide position 800 in the inland population (Hwaamysku). However, in our data, that variation did not occur between the South Korean A. mongholicus cultivar and A. nakaianus but, instead, among samples of that cultivar (Table 2).

Microsatellite analysis: Cluster assignments were made for 30 individuals from A. nakaianus and 31 individuals from the South Korean A. mongholicus cultivar. According to the program STRUCTURE, the most likely K is the one where it is maximized in ln Pr(X|K). Here, the likelihood for partitioning of the data increased sharply from K = 1 to K = 2 before increasing or decreasing from K = 2 to K = 8 (Fig. 1). The uppermost level of K indicated K = 2 as the most probable number of clusters to explain the observed genotypes (Fig. 1). Therefore, we used the result of K = 2 in our analysis. In STRUCTURE analysis, all individuals within the A. nakaianus and A. mongholicus cultivar strongly assigned to different cluster each other (Fig. 2). The percentage of variance attributed to differentiation among populations was 5% while that between taxa was 9%. The value for Fst between taxa was 0.125 (P < 0.001).

4. Taxonomic treatment

var. dahuricus (DC.) Podlech, Sendtnera 6: 172. 1999-

Basionym: Phaca alpina L. var. dahurica DC., Prodr. 2: 273. 1825. Type: Dahuria, ?, Fischer s.n. (Isotype, P, seen as a photo!).

Korean name: Hwang-gi

Distribution: China, Russia, Japan, and Korea.

Korea: Growing on high mountains of North Korea and cultivated in North and South Korea.

Taxonomic note: South Korean A. mongholicus cultivar has been known as A. membranaceus, nom. illeg., in Korean flora (Lee, 2003; Lee, 2006). However its legitimate and validly
published name was *A. mongholicus* var. *dahuricus*. Plants of this cultivar differ from those of *A. mongholicus* var. *mongholicus* based on the number of leaflets, lengths of leaf axes and leaflets, and the presence of hairs on the ovary and legume. Because the South Korean cultivar and *A. mongholicus* var. *dahuricus* do not differ significantly in their morphology and ITS sequences, we suggest that the cultivar should be treated as *A. mongholicus* var. *dahuricus*.

var. nakaianus (Y.N. Lee) I.S. Choi & B.H. Choi, com. nov. *A. nakaianus* Y.N. Lee, Kor. J. Bot. 24: 28. 1981. *A. membranaceus* var. *nakaianus* Y.N. Lee, New Flora of Korea, 738. 2006, nom. illeg. **Type**: Jeju Island, Korea, Aug. 9, 1957, Lee, Y.N. s.n. (Lectotype, designated here, EWH!, EWUA200909201123, see Fig. 3); Jeju Island, Korea, Aug. 9, 1957, Lee, Y.N. s.n. (Isolectotype, designated here, EWH!, ENHA200508012079, see Fig. 3).

Korean name: 제주황기 Je-ju-hwang-gi

Perennial. Stems 15-40 (70) cm tall; tufted and ascending or decumbent, sulcate, angled, sparsely covered with appressed white hairs; **Leaves** (2) 3-6 (10) cm long, petiole short; stipules free or adnate, cauline, green, foliaceous, triangular-ovate, subacute, 3-14 mm long, sparsely on the outside with white hairs; leaflets oblong-obovate, oval or oblong-oval, round tipped or subobtuse, 7-10 pairs, 4-8 (9) mm long, thick, glabrous above, beneath with white appressed hairs; **Inflorescences** racemes loose, oblong-ovoid to ovoid, 3-5 cm long (4-8 cm in fruit), 7-13 flowered; peduncles firm, stiffly upright, axillary or solitary, divergent, as long as or slightly longer than subtending leaves, 4-7 cm long, sparsely covered with short appressed white hairs (rarely with isolated black hairs at inflorescence base), sulcate; bracts lanceolate, 3-8 mm long, white-membranous, sparsely covered with white hairs on the outside; pedicels 2-4 mm long, beset with white hairs; **Calyx** 5-7 mm long, campanulate, strongly oblique, saccate at base, hispidulous with very short appressed black or white hairs, the tube 4 times as long as the linear-subulate teeth; **Corolla** yellow 13-15 (17) mm; standard 14-16 mm long, the limb obovate, retuse gradually attenuate and 3-4 times as long as the claw; wings 13-15 mm long, the claw 1.5 times as long as the obovate limb; keel slightly short or equaling to the wings, the claw 1.5 times as long as the aculeate limb; ovary hairy on stipe 1.5 times to twice its length; **Legumes** pendulous from a slender stipe ca. 1.5 times the length of calyx, suborbicular-oval in outline, short-mucronate, 28-33 mm long, ca. 10 mm broad, slightly compressed laterally, inflated, thinly membranous, sparsely pubescent with very short appressed black and white hair, unilocular. **Flowering** July (later)-August; **Fruit** August-September.

Distribution: Alpine meadow at Mt. Halla on Jeju Island, Korea.

![Fig. 3. Type specimens of Astragalus mongholicus Bunge var. nakaianus (Y.N. Lee) I.S. Choi & B.H. Choi. Left: Lectotype, Right: Isolectotype.](image-url)
Typification: In the protologue, Lee (1981) indicated the type and the deposited herbarium (Ewha Womans University) without collection number. However, the protologue includes the information of the locality, collector, and date of collection. So, we searched the specimens from herbarium of Ewha Womans University (EWH) and found two sheets of *A. nakaianus* (without collection number, EWUA2009201123 and ENHA200508012079) that matches the type information indicated in protologue. Thus, the two sheets are regarded as the original material (ICN Art. 9.3, McNeill et al., 2012). Since Lee (1981) did not designate a holotype, we considered these two specimens as syntypes and selected sheet EWUA2009201123 (with flowering stem) as lectotype and sheet ENHA200508012079 as isolectotype (ICN Art. 9.2, 9.5, 9.12, McNeill et al., 2012).

Taxonomic note: *Astragalus nakaianus* has been separated from *A. membranaceus* by its tufted stems and very small leaflets (Lee, 1981). In our morphological comparisons, the former was characterized by its tufted and ascending or decumbent stems and relatively small vegetative features, including plant height and lengths of axes and leaflets. However, we found no clear morphological discontinuities between it and *A. mongholicus*. Thus, these characters might represent a geographic variation, especially when one considers the wide distributional area of *A. mongholicus*. Likewise, *A. nakaianus* could not be distinguished from *A. mongholicus* when we examined the DNA sequences for ITS regions of the nuclear and five non-coding regions in the chloroplast. Differences have been reported with regard to histological characters (Lee and Tho, 1959) and karyotype analysis of chromosomes (Tho, 1971; Kim et al., 2006). Our structure analysis of nine microsatellites revealed that *A. nakaianus* is clearly divided from *A. mongholicus* var. *dahuricus*.

Based on these results, we argue that *A. nakaianus* should be merged into *A. mongholicus*. Although it should retain the variety rank as formerly treated (Lee, 2006), the species name must be changed from *A. membranaceus*, nom. illeg., to *A. mongholicus*. Furthermore, *A. mongholicus* var. *nakaianus* should be regarded as relict on high mountains because of interglacial warming.

Acknowledgments

We wish to express our sincere thanks to curators of herbaria; EWH, KWNU, SKK, SNU, SNUA, WTFRC, TUS, NY, and PE for examination of specimens used for the present study. We also thank two anonymous referees for their invaluable comments to improve the manuscript. This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0010411).

Literature Cited

Guo, H. Y., W. W. Wang, N. Yang, B. L. Guo, S. Zhang, R. J.

White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for
In-Su Choi, So-Young Kim and Byoung-Hee Choi

Appendix: Specimens examined for this study

Astragalus mongholicus Bunge var. *dauricus* (DC.) Podlech
