The complete chloroplast genome sequence of *Hibiscus sabdariffa* (Malvaceae)

Soon-Ho KWON, Yunmi PARK, You Lim JANG and Hae-Yun KWON*

Department of Forest Bio-Resources, National Institute of Forest Science, Suwon 16631, Korea

ABSTRACT: *Hibiscus sabdariffa* L., (roselle) in the Malvaceae family is an erect subshrub known to be native to India and Malaysia. It is widely used as a food or tea material around the world, and its therapeutic effects have been widely studied. In this study, the sequencing of the complete chloroplast genome of *H. sabdariffa* was carried out. The result indicates a genome size of 162,428 bp, which is composed of a large single copy of 90,327 bp, two inverted repeats of 26,242 bp each, and a small single copy of 19,617 bp. Overall, a total of 131 genes were predicted, including 86 coding sequences, 37 tRNAs, and 8 rRNAs. According to a phylogenetic analysis, it was clearly distinguished from outgroups such as other species of the genus *Hibiscus* used in the analysis.

Keywords: chloroplast genome, edible plant, herbal medicine, *Hibiscus sabdariffa*, phylogenetic analysis, roselle

RECEIVED 19 April 2022; **REVISED** 24 May 2022; **ACCEPTED** 16 June 2022

INTRODUCTION

Malvaceae consists of 244 genera and 4,225 species (Christenhusz and Byng, 2016). In the genus *Hibiscus*, more than 250 species are distributed from the temperate to tropical climate regions (Mandaji et al., 2022), and these species include herbs, shrubs, or trees (Abdullah et al., 2020). Plants of the genus *Hibiscus* have been studied and used not only for ornamental purposes, but also as functional foods and medicines (Abdelhafiz et al., 2020).

Hibiscus sabdariffa L., commonly known as roselle, is an herbaceous subshrub and can reach up to 2.5 m in height, and generally possesses red stems and calyces (Morton, 1987; DaCosta-Rocha et al., 2014; Bule et al., 2020). Roselle is known to be native to India and Malaysia, but it has been cultivated and spread in countries with tropical and subtropical climates regions (Izquierdo-Vega et al., 2020). Roselle has a variety of uses: the seeds are used as a source of dietary fibres, antioxidants, and edible oil. The dried calyx is used in beverages and teas known as carcade that are effective against chronic non-communicable diseases (Dhar et al., 2015; Montalvo-González et al., 2022). Roselle has been mainly studied on its utility in various industries, but few on genetic characteristics and structure (Sánchez-Mendoza et al., 2008; Montalvo-González et al., 2022).

Chloroplast is an organelle that performs primarily photosynthesis, and its genome sequence is well conserved, so it is a major material utilized in the studies of species classification, differentiation and evolutionary process (Liu et al., 2019; Cheng et al., 2020; Kim et al., 2021). In this study, the chloroplast complete genome sequence assembly of roselle was performed for the first time to be used as an important material for further studies on the evolution and biodiversity of the species and among the species of *Hibiscus*.

MATERIALS AND METHODS

Fresh leaves of *H. sabdariffa* were sampled in National Institute of Forest Science, Suwon, Korea. Total DNA was extracted by GeneAll Genomic DNA Purification Kit (GeneAll Biotechnology, Seoul, Korea). DNA library was constructed using TruSeq Nano DNA Kit with a protocol according to the Sample Preparation Guide provided by the manufacturer (Macrogen Inc., Seoul, Korea). Genome sequencing was performed on the Illumina NovaSeq 6000 platform with 151 bp read size and paired-end type (Macrogen Inc.).

The chloroplast complete genome was assembled using
NOVOPlasty v.4.3.1, an organelle assembler (Dierckxsens et al., 2017). To increase assembly reliability, repeated assembly work was performed with K-mer 21, 23, 25, 27, 29, 31, 33 based on two reference genome sequences, *H. syriacus*, NC_026909 (Kwon et al., 2016) and *H. sinosyriacus*, MZ_367751. Comparative sequence verification and error correction were carried out by manually. Gene annotation was performed using BLATN, BLATX, and Chloe v. 0.1.0 in GeSeq, an annotator of organelle genomes (Tillich et al., 2017). A circular map of the chloroplast complete genome was drawn by OGDRAW v. 1.3.1 (Greiner et al., 2019). Microsatellite analysis was carried out by MicroSAtellite (MISA) v. 2.1 with a default setting (Beier et al., 2017).

For phylogenetic analysis, total nine chloroplast genome sequences of Malvaceae were used, including *H. sabdariffa* and two outgroups, *Gossypium raimondii* and *G. trilobum*. Sequences were aligned using the Clustal Omega v. 1.2.4, alignment program (Sievers et al., 2011). The phylogenetic tree was reconstructed using the Maximum Likelihood method with the JTT matrix-based model and 1,000 bootstrap replicates in MEGA v. 11.0.11 (Tamura et al., 2021).

RESULTS AND DISCUSSION

A total of 159,895,334 reads were produced in assembly work. Of these, 1,768,742 reads, about 9% of total reads mapped to the reference genomes, *H. syriacus* and *H. sinosyriacus* and the average organelle coverage of total reads compared to overlapped sequences was 9162 x. Finally, the chloroplast complete genome of *H. sabdariffa* was assembled. Its total genome size was 162,428 bp. The chloroplast genome of the species was registered in NCBI’s GenBank with accession

![Fig. 1](image_url)
Fig. 1. A circular map and annotations of chloroplast complete genome of *Hibiscus sabdariffa* drawn by OGDRAW v. 1.3.1 and annotated by BLATN, BLATX, and Chloe v. 0.1.0 in GeSeq organelle annotation web tool.
The complete chloroplast genome of Hibiscus sabdariffa determined in this study will provide useful information for further studies on evolution and biodiversity with Hibiscus species and Malvaceae, which contain many economically important plants.

ORCID: Soon-Ho KWON 0000-0003-4142-9973; Yunmi PARK 0000-0003-2428-4581; You Lim JANG 0000-0002-6425-2448; Hae-Yun KWON 0000-0001-8365-8788.

ACKNOWLEDGMENTS

This work was supported by the National Institute of Forest Science (NiFoS) grant funded by the project number FG0403-2018-01.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

LITERATURE CITED

